

Optimizing Tissue Culture for Germination and Growth of Drought-Tolerant Wild Tomato

Aubrilin Johnson, Yu-Ya Liang, Utah Valley University, Department of Biology

Introduction

- Wild tomato species from Peru and Argentina have drought-tolerant traits but are difficult to germinate and transition into flowering.
- Tissue culture techniques using plant growth regulators can help improve germination and seedling establishment.
- Seeds were received from the Tomato Genetics Resource Center (TGRC) and tested under different media compositions to determine optimal germination conditions.

Figure 1 & 2: (Left) Map highlighting the native range of wild tomato species in South America. (Right) *S. chilense* growing in its natural arid habitat, illustrating its adaptation to extreme drought conditions.

Accession:	Type:	Species name:	Reason:	Source:
LA1958	Wild	<i>S. chilense</i>	Drought tolerant	TGRC
LA1703	Cultivated	<i>S. lycopersicum</i> var. <i>cerasiforme</i>	Yellow, tastes good	Harvested
LA2885	Wild	<i>S. sitiens</i>	Drought tolerant	TGRC
LA3320	Cultivated	<i>S. lycopersicum</i> cv. <i>Hotset</i>	Heat tolerance	TGRC

Table 1: Tomato accessions used in the study, including two wild and two cultivated species. Seeds were sourced from TGRC and harvested collections.

Results

Figure 4. Germination ratings of four tomato accessions (LA1958, LA1703, LA2885, LA3320) across four different tissue culture media. Media 3 and 4 showed the highest germination success, while Media 1 and 2 resulted in little to no growth. Germination was graded on a scale of 0 (no growth), 1 (roots only), and 2 (roots + shoots).

Media performance:

- Media 1 and Media 2: No germination occurred across all accessions, indicating that these media were ineffective in breaking dormancy.
- Media 3: Moderate germination was observed, with most accessions reaching roots only (1) or roots + shoots (2).
- Media 4: Showed the highest germination success, with all accessions except LA3320 reaching full root and shoot development (rating = 2).

Accession Performance:

- LA1958 and LA1703 showed similar trends, with improved germination in Media 3 and 4.
- LA2885 had the best overall germination, reaching full root and shoot development in both Media 3 and 4.
- LA3320 exhibited slightly lower germination in Media 4, suggesting species-specific responses to the media.

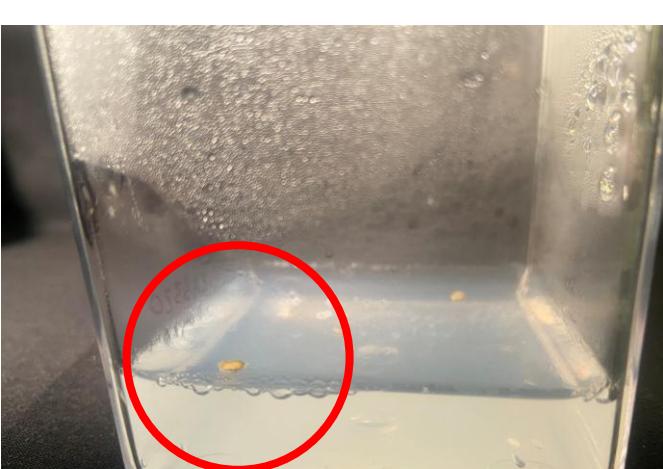
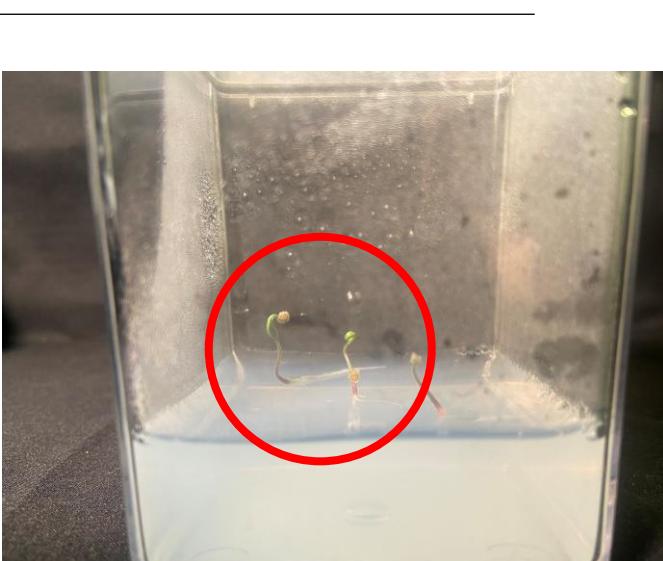
Methods

Tomato Accessions:

- Four tomato genotypes were selected based on drought tolerance and fruit characteristics.

Seed Sterilization:

- Seeds were sterilized using a 10% bleach solution for 10 minutes.
- Rinsed multiple times with sterile distilled water before placement in magenta boxes.



Tissue Culture Setup:

- 16 magenta boxes were prepared, with each accession placed in all four media types.
- Cultures were incubated under controlled conditions.
- Germination rates and seedling vigor were recorded.

Tissue Culture Treatments:

- Four different media compositions were tested:
 - Media 1 (Control): $\frac{1}{2}$ Murashige and Skoog (MS) medium
 - Media 2 (GA Treatment): $\frac{1}{2}$ MS medium + Gibberellic Acid (GA)
 - Media 3 (BAP Treatment): $\frac{1}{2}$ MS medium + 6-Benzylaminopurine (BAP)
 - Media 4 (Combined Treatment): $\frac{1}{2}$ MS medium + GA + BAP

Germination rating:

Grade 0: No growth	
Grade 1: Only root growth	
Grade 2: Root and shoot growth	

Figure 3. Germination ratings of four tomato accessions (LA1958, LA1703, LA2885, LA3320). Germination was graded on a scale of 0 = no growth, 1 = roots only, and 2 = roots + shoots.

Transition to Greenhouse

Successful Transition to Greenhouse:

- Seedlings from Media 3 and Media 4 were successfully transferred from sterile magenta boxes to greenhouse conditions.
- Despite the expected challenges of adapting from a controlled environment, most seedlings continued to grow healthily with minimal transplant shock.
- Both *S. chilense* and *S. sitiens* developed strong root systems, making them ideal candidates for further evaluation in drought tolerance testing.
- The optimized tissue culture treatments improved germination rates and supported strong seedling establishment, ensuring long-term viability.

Figure 5. Successful transition of LA1703 into greenhouse.