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Abstract

High night-time temperatures (HNT) pose a threat to the sustainability of crop production,

including rice. HNT can affect crop productivity and quality by influencing plant physiology,

morphology, and phenology. The ethylene perception inhibitor, 1-methylcyclopropene (1-

MCP), can minimize HNT-induced damage to plant membranes, thereby preventing

decrease in rice yield. In this study, we employed a transcriptome approach to investigate

the effects of HNT, 1-MCP, and their interaction on two Texas rice varieties, Antonio and

Colorado. The plants were exposed to temperatures of 25˚C (ambient night-time tempera-

ture, ANT) and 30˚C (HNT) using an infrared heating system from the booting stage until

harvest, while 1-MCP was applied at the booting stage of rice development. Several physio-

logical and agronomical traits were evaluated under each condition to assess plant

responses. Leaf tissues were collected from the plants grown in the ANT and HNT condi-

tions after the heat stress and 1-MCP treatments. Based on agronomic performance, Colo-

rado was less negatively affected than Antonio under HNT, showing a slight reduction in

spikelet fertility and leaf photosynthetic rate but no significant reduction in yield. The applica-

tion of 1-MCP significantly mitigated the adverse effects of HNT in Antonio. However, no sig-

nificant differences were observed in yield and leaf photosynthetic rate in Colorado.

Furthermore, transcriptomic data revealed distinct responsive mechanisms in Antonio and

Colorado in response to both HNT and 1-MCP. Several ethylene and senescence-related

transcription factors (TFs) were identified only in Antonio, suggesting that 1-MCP affected

the ethylene signaling pathway in Antonio but not in Colorado. These findings contribute to

our understanding of the physiological differences between varieties exhibiting susceptible

and tolerant responses to high night-time temperatures, as well as their response to 1-MCP

and ethylene regulation under 1-MCP.
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Introduction

Rice (Oryza sativa L.) is one of the most essential grains produced worldwide. It serves as a sta-

ple food for more than 3 billion people in different countries around the world. However, due

to the changes in the climate today, crop production faces great challenges, such as increased

drought and heat stress. High night-time temperature (HNT) has become a detrimental factor

limiting rice yield and grain quality globally [1–4]. Grain yields declined by 10% for each 1˚C

increase in the minimum (i.e. night) temperature during the dry season, whereas the effect of

maximum temperature on crop yield was insignificant [5]. The mid-south US is vulnerable to

periods of HNT, which can decrease rice fertility and yield [6]. HNT stress is also known to

increase oxidative stress and ethylene levels in plants which can induce the production of eth-

ylene-triggered reactive oxygen species (ROS) [7]. ROS may cause DNA, protein, and mem-

brane damage [8, 9], which can affect various variables, including leaky membranes, which

affect the production, consumption, and transfer of photosynthates. These physiological

responses can have negative effects on grain quality and grain yield. Ethylene is a multifunc-

tional plant hormone, which not only raises signals for stress responses but also affects growth

and development [10]. The accumulation of ethylene in the plant during heat stress accelerates

senescence and leads to reduced spikelet fertility and grain yield [11–13]. 1-methylcyclopro-

pene (1-MCP) is an ethylene perception inhibitor that inhibits the production of ROS and

minimizes HNT stress-induced damage. By competitively binding to the ethylene receptor,

1-MCP prevents the chemical effects of ethylene, thereby preventing yield loss, and leads to an

improvement in yield-related traits of crops such as rice and soybean [6, 7, 14]. Comprehen-

sive analysis of the molecular mechanisms involved in the relationship between HNT and

1-MCP will shed a light on the mechanisms of tolerance and may provide opportunities for

genetic manipulation for more effective approaches to overcome the challenges presented due

to HNT stress.

Whole-genome transcriptomic studies are often used to study molecular mechanisms of

various plant characteristics under different growth conditions and have been applied in many

crops, including rice, under diverse abiotic stress conditions [15–19]. Several transcriptomic

studies have demonstrated the significance of breeding rice towards improving thermotoler-

ance. For example, [20] investigated the effects of heat stress on panicle development in two

rice cultivars exposed to different heat stress conditions (40˚C vs. 32˚C). Their findings

revealed that high temperature conditions triggered the signaling of endogenous hormones,

promoting heat tolerance, but also negatively regulated starch and sucrose metabolism, thus

impeding panicle development. A study by [21] examined the impact of heat stress on anther

response during anthesis in rice and identified several key gene categories associated with

anther heat tolerance, including nucleic acid, protein metabolism, and transcription factors. In

another study by [22], contrasting rice varieties were subjected to heat stress conditions (37˚C

and 42˚C), highlighting the crucial roles of auxin and ABA response genes in heat tolerance.

Additionally, the study explored the interaction between these genes and transcription factors

(e.g., HSF, NAM, ATAF and CUC (NAC), and WRKY). However, these studies did not inves-

tigate the role of high night-time temperature and interactions with ethylene perception.

The aim of the current study was to investigate the underlying molecular mechanisms

involved with HNT conditions, the impact of application of 1-MCP, and the interaction

between the two factors. RNA-seq was performed on two rice varieties, ‘Colorado’ and ‘Anto-

nio’, having different responses to HNT. Additionally, several agronomical and physiological

traits were measured. Our results of both transcriptome profiling and phenotypic data con-

curred that Colorado was more tolerant under HNT stress. The application of 1-MCP largely

increased the yield, spikelet fertility, and leaf photosynthetic rate in HNT susceptible variety,
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Antonio. On the other hand, 1-MCP did not show beneficial effects to Colorado under HNT.

Some of the differentially expressed genes (DEGs) detected in this study can be further investi-

gated through further molecular studies and manipulation for crop improvement to enhance

plant performance and mitigate grain yield reduction under HNT conditions.

Materials and methods

Plant materials, heat treatment and 1-MCP treatment

Colorado and Antonio are two elite long-grain rice varieties [23, 24] selected for this study due

to their differing performances in agronomic traits under high nighttime temperature (HNT)

conditions, such as yield. Colorado is a high-yielding rice cultivar derived from ‘Cocodrie’ and

‘L202’, developed for its shortened growing cycle and lower water usage. On the other hand,

Antonio, derived from a cross of ‘Cypress’ and ‘Cocodrie’, was developed for early maturation.

Plant materials were acquired from the Texas A&M AgriLife Research Center at Beaumont,

TX. For each variety, there were four conditions with four replicates for the phenotyping data

and three replicates for the RNA extraction and sequencing: (1) 25˚C ambient night-time tem-

perature (ANT; greenhouse settings) with 1-MCP, (2) 25˚C ANT without 1-MCP, (3) 30˚C

HNT with 1-MCP, and (4) 30˚C HNT without 1-MCP. In total there were 32 plant samples

evaluated for phenotyping using the two varieties Colorado and Antonio in this study. From

those 32 samples, 24 samples in total were used for RNA-Seq analysis.

The plants were grown in 3-liter pots filled with clay soil, which was typical of the rice

farms in the area, using a randomized complete block design (RCBD) in the greenhouse at the

Texas A&M AgriLife Beaumont Research & Extension Center in 2017. Each pot had five seeds

placed at a depth of 2.5 cm. Once the seedlings emerged, the plants were thinned down to one

plant per pot. All the plants were maintained at ANT until the booting stage. At booting stage,

half of the plants were selected randomly and moved under heat lamps (HNT: 30˚C) which

were positioned 1.0 m above the topmost part of the plants and provided controlled infrared

radiation enrichment [6]. The remaining half of the plants remained at ambient conditions

which were setup with dummy heaters that provided a similarly shaded environment. Within

each temperature condition, half of the plants were randomly selected to be treated with

1-MCP (courtesy of AgroFresh, Pennsylvania, U.S.A.) at the booting stage. High night-time

temperature conditions (from 8:00 PM to 6:00 AM) were imposed starting at the booting stage

and maintained until harvest. The temperature treatments in the greenhouse were monitored

independently of the temperature-control system through the use of standalone sensor/loggers

(HOBO, H08-003-02; Onset Computer Corporation, Bourne, MA, USA), which were placed a

few centimeters into the canopy in both portions of the study.

Phenotypic evaluation

The physiological parameters measured at physiological maturity were grain yield and spikelet

fertility. Leaf photosynthetic rate was measured five days after treatment. Spikelet fertility was

calculated from filled and unfilled grain numbers on each of the selected panicles. All panicles

in each pot were manually threshed and manually separated as filled and unfilled grains. Grain

yield was measured as the total grain weight per pot. In our study, leaf net photosynthetic rate

(Pn) was measured as previously reported by [6]. In brief, Pn was measured on the penultimate

leaves using a LI-6400 portable photosynthesis system (LI-COR Inc., Lincoln, NE, USA)

between 10:00 AM and 12:00 PM. The photosynthetic photon flux density (PPFD) was set to

1500 μmol m−2 s−1. The temperature and CO2 concentration in the leaf cuvette were set to

25˚C and 360 ppm (ambient CO2 concentration in the greenhouse), respectively. Humidity in

the cuvette was controlled by circulation of the air through desiccant. A steady flow rate of
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500 μmol s−1 was maintained in the leaf chamber. Three individual leaves (penultimate posi-

tion) per plant were measured. The student’s t-test was performed using JMP Pro 12.2 to

determine the significance of difference for all traits.

RNA extraction and sequencing

A total of 24 leaf tissue samples were collected from Antonio and Colorado. For each tempera-

ture condition and chemical treatment, three biological replicates were collected. These sam-

ples were collected at 5 days post exposure to night-time temperature treatments (HNT/ANT),

at booting stage, and flash frozen in liquid nitrogen. The RNA extraction procedure was per-

formed using the QIAgen RNeasy Plant Mini kit. These RNA samples were submitted to

Texas A&M AgriLife Genomics and Bioinformatics Service (TxGen; College Station, TX,

USA) for RNA-Seq library preparation and sequencing. The libraries were run on multiple

lanes of an Illumina HiSeq 4000 (San Diego, CA, USA) to provide at least 25 million reads (75

nt pair-end) per sample.

Data processing

In total, 24 cDNA libraries were submitted for sequencing, including three biological replicates

for each treatment. Data were processed as reported in our previous study [17]. Briefly, raw

reads were first trimmed adapters and removed low-quality bases using Trimmomatic version

0.36 [25], aligned to Oryza sativa spp. Japonica reference genome International Rice Genome

Sequencing Project (IRGSP)-1.0; [26, 27] using HISAT2 version 2.1.0 [28]. StringTie v1.3.4d

[29] was used to assemble the transcripts within the regions and obtain the gene counts.

Differential expression, gene ontology enrichment, and KEGG pathway

analyses

Differential expression analysis was performed in R studio using DESeq2 v1.26 [30] with reads

normalizing and variance stabilizing transformation to account for library size and sequencing

depth differences. For this study a generalized linear model was used:

Y ¼ tTrt þ gMCP þ tTrt � gMCP

where Y is the read count for each gene, with three explanatory variables, including heat treat-

ment (HNT and ANT), 1-MCP treatment (1-MCP and without 1-MCP), and interaction

between heat treatment and 1-MCP treatment, was used in this study. Due to the genetic back-

ground differences between Antonio and Colorado, data from the two varieties were fitted in

the model separately. Internally, p-values were adjusted for multiple testing using the Benja-

mini–Hochberg method in the DESeq2 package. Genes with a false discovery rate (FDR)

adjusted P-value (Padj)< 0.05 were identified as differentially expressed genes (DEGs).

There were five DEG lists used for the gene ontology (GO) enrichment and Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathway analyses in each variety, including interaction

effects between heat treatment and 1-MCP, heat effect without 1-MCP, heat effect with

1-MCP, 1-MCP effect under ANT, and 1-MCP effect under HNT. Gene ontology enrichment

analysis and KEGG pathway analysis were performed using the web-based tool g:Profiler

(https://biit.cs.ut.ee/gprofiler/gost) [31]. The significant threshold of GO and KEGG analyses

was determined by Benjamini–Hochberg method with FDR adjusted. GO terms and KEGG

pathways with FDR < 0.05 were identified as significant.
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Protein–protein interaction (PPI) network analysis and hub gene

identification

In order to understand the potential interaction between identified DEGs, protein–protein

interaction (PPI) network analysis was performed based on the STRING database (https://

string-db.org) [32]. The PPI networks were constructed and visualized using StringApp v.1.7.0

[33] on Cytoscape software v.3.9.0 [34]. To explore the potential connected regions of the net-

work, "full STRING network" was used in StringApp, with default setting of an interaction

score cutoff of 0.4 and a maximum additional interactors of 0; and protein sources were lim-

ited to Oryza sativa. The resulting PPI network was then analyzed for hub genes using cyto-

Hubba [35]. In our study, hub genes were defined by top 20 nodes ranked by maximal clique

centrality (MCC) score.

Results and discussion

Physiological response under high-time temperature (HNT)

The results of the current study indicated differential physiological responses to HNT and

1-MCP with respect to yield, spikelet fertility, and leaf photosynthetic rate (Table 1). Under

HNT condition, the responses among the three physiological characteristics in Antonio had

significantly decreased, ranging from 20–55% (Table 1). On the other hand, Colorado had

reduced spikelet fertility and leaf photosynthetic rate (11% and 9%, respectively), but there was

no significant decrease in yield (Table 1). Taken together, Colorado was less affected by HNT

than Antonio. Previous studies have reported reduced spikelet fertility, photosynthetic rate,

and yield as a result of HNT [6, 14, 36]. The decreased spikelet fertility is associated with

impaired hormonal balance in the floret [37] and/or reduced availability of photosynthates to

the kernel [38] and/or inability of floral buds to mobilize carbohydrates under heat stress [39].

To understand whether 1-MCP can mitigate the negative effects of HNT and the response

of two rice varieties under ANT, 1-MCP was applied to the two rice varieties undergoing ANT

and HNT treatments. The results showed that the application of 1-MCP significantly pre-

vented negative effects of HNT in Antonio (Table 1). In contrast, there were no significant dif-

ferences for yield and leaf photosynthetic rate in Colorado (Table 1). Interestingly, 1-MCP

may provide a slightly negative effect on spikelet fertility in Colorado under HNT (Table 1).

Under ANT conditions, 1-MCP did not show any significant change in physiological response

among traits except an 11% reduction in spikelet fertility for Antonio (Table 1). Previous

Table 1. Effect of variety on physiological traits under ambient night-time temperature (ANT) and high night-time temperature (HNT) conditions, with or without

MCP (1-methylcyclopropene) treatment for the heat susceptible variety, Antonio and heat tolerant variety, Colorado.

Traits ANT1 HNT1 Effects of

HNT (%)2
ANT-MCP Effects of

MCP.ANT

(%)3

HNT-MCP Effects of

MCP.HNT5

(%)

A4 C4 A C A C A C A C A C A C

Yield (g plant-1) 9.7 9.9 4.4 10.7 -55 NS 10.3 9.1 NS NS 11.2 9.6 156 NS

Spikelet fertility (%) 79.7 81.9 36.9 72.9 -54 -11 70.8 78.2 -11 NS 71.9 62.7 95 -14

Leaf photosynthetic rate (umol m-2s-1) 20.5 21.4 16.3 19.5 -20 -9 19.5 21.1 NS NS 18.0 20.9 10 NS

1ANT (25˚C; 77˚F); HNT (30˚C; 86˚F)
2Effects of HNT (%): This is the percent difference of the effects due to HNT, where a negative % corresponds to harmful effects.
3Effects of MCP at ANT (%): This indicates the effects of 1-MCP under ANT conditions compared to the control (no 1-MCP treatment) under ANT.
4The “A” indicates the heat susceptible variety, Antonio, whereas the “C” indicates the heat tolerant variety Colorado.
5Effects of MCP at HNT (%), where a positive % corresponds to a beneficial effect.

https://doi.org/10.1371/journal.pone.0311746.t001
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studies also reported the beneficial effects of the 1-MCP application under heat stress in rice

and soybean [7, 14].

Principal component analysis of RNA-seq samples and overview of DEGs

There were three explanatory variables evaluated in the current study, which include a variety

(Antonio: heat susceptible and Colorado: heat tolerant) variable, heat (HNT and ANT), and

1-MCP treatment (1-MCP and without 1-MCP). To explore the comprehensive gene expres-

sion differences of the HNT susceptible variety, Antonio, and the tolerant variety, Colorado,

under HNT conditions and with and without the 1-MCP treatment, a total of 38,909 annotated

rice genes with at least 10 counts were used for principal component (PCA) analysis. As

sources of variation were explored, variety appeared to be the most significant factor in

explaining the variations in gene expression and explained 47% of the total variance (see S1

Fig). Samples from the same genotype grouped close together regardless of the HNT and

1-MCP conditions, indicating that samples with the same genotype had relatively similar gene

expression patterns. For the HNT tolerant variety, Colorado, the second most important factor

was HNT treatment, which clearly separated samples into two groups regardless of the 1-MCP

application. On the other hand, the susceptible variety, Antonio, showed that both HNT and

ANT samples had similar gene expressions without 1-MCP application. However, with

1-MCP application, HNT and ANT samples displayed separately as in the tolerant variety

Colorado.

To minimize the effect of different genetic backgrounds, data from Antonio and Colorado

were analyzed independently. Venn diagrams illustrated the number of DEGs for different

comparisons (Fig 1). A total of 278 and 287 genes were identified to be differentially expressed

after 1-MCP application under ANT conditions for Antonio and Colorado, respectively (Fig

1A). Among all of the 1-MCP responsive DEGs, only nine DEGs were common between the

two varieties (Table 2), suggesting that the varieties had very distinct responses toward 1-MCP.

Under HNT conditions, Antonio had 652 DEGs and Colorado had 487 DEGs. There were 56

DEGs commonly identified in both varieties (Fig 1B). These 56 common DEGs were enriched

in only one molecular function GO term (GO:0016165)- linoleate 13S-lipoxygenase activity,

which can be related to the lipid peroxidation after heat stress. Previous studies showed that

lipoxygenase (LOX) plays an important role in fatty acid oxidation and can cause membrane

degradation under stress [40–42]. The results suggested that the two varieties had responded

to heat stress and had very distinct responsive mechanisms. In addition, under HNT condi-

tions, both Antonio and Colorado had four times more DEGs with 1-MCP compared to those

without 1-MCP (Fig 1C and 1D).

Molecular response to high night-time temperature (HNT)

Under HNT conditions, Antonio had 652 DEGs and Colorado had 487 DEGs without 1-MCP

application (Fig 1B; S1 Table). In Antonio, there were 215 DEGs that up-regulated and 437

DEGs that were down-regulated. On the other hand, Colorado had 102 DEGs that were up-

regulated and 385 DEGs that were down-regulated. For both varieties, the top two largely up-

regulated DEGs were unannotated genes, including Os03g0232050 and Os08g0327501 in

Antonio, and Os01g0234001 and Os03g0221600 in Colorado (S1 Table). To understand the

potential function of these DEGs, their sequences were BLAST against NCBI database. The

results showed that Os03g0232050 is perfectly matched for predicted F-box protein SKIP22

(NCBI sequence ID: XM_015775845.2) and Os03g0221600 is perfectly matched for predicted

G-type lectin S-receptor-like serine/threonine-protein kinase (NCBI sequence ID:

XM_015775926.2). The F-box proteins have been linked to stress response and ethylene-
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signaling pathway [43]. Previous studies reported that F-box proteins have positive function in

wheat [44, 45] but possibly have a negative effect on abiotic stress tolerance in rice [46]. To our

knowledge, there is no reported molecular work in rice for lectin S-receptor-like kinase (RLK);

however, based on the studies in wheat, Arabidopsis, and tomato, RLKs have a function related

to salt tolerance, plasma membrane stability, and disease resistance [47–50]. In addition, there

were three photosynthesis-related genes that were down-regulated in Antonio, including Pho-

tosystem II protein Psb28 (Os01g0938100), 22-kDa Photosystem II protein (Os01g0869800),

and Photosystem I PsaO domain-containing protein (Os04g0414700). On the other hand, no

photosynthesis related DEGs were identified in Colorado.

To understand the functional classification underlying these DEGs, GO enrichment and

KEGG enrichment analyses were performed. There were 19 GO terms enriched in Antonio in

response to HNT, including 14 GO terms in biological process (BP), such as chromatin assem-

bly, DNA packaging, oxoacid metabolic process, response to heat and so on; one GO term

enriched in molecular function (MF); and four GO terms enriched in cellular component

(CC) (S2 Table). Interestingly, there were three KEGG pathways enriched in Antonio, biosyn-

thesis of secondary metabolites, nitrogen metabolism, and arginine and proline metabolism.

For Colorado, there were eight BP terms, two MF terms, and two CC terms enriched. There

Fig 1. Venn diagrams of the number of DEGs between each comparison. (A) HNT tolerant genotype Colorado and susceptible genotype

Antonio after MCP application under control condition (ANT). (B) HNT responsive DEGs in Antonio and Colorado without MCP application.

(C) DEGs between with and without MCP application in Colorado under HNT condition. (D) DEGs between with and without MCP

application in Antonio under HNT condition.

https://doi.org/10.1371/journal.pone.0311746.g001
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was no stress-related GO term that was enriched in Colorado, but there was an enriched

KEGG term (KEGG:00902 Monoterpenoid biosynthesis) linked to a stress response. DEGs

that are involved in Monoterpenoid biosynthesis pathway, including short-chain dehydroge-

nase/reductase (SDR) domain containing protein (Os04g0531900 and Os04g0532100) and sim-

ilar to salutaridine reductase protein (Os04g0532400). SDR proteins form one of the largest

and oldest NAD(P)(H)- dependent oxidoreductase families and have been demonstrated in a

variety of primary and secondary metabolisms, including lipid synthesis and chlorophyll bio-

synthesis or degradation [51, 52]. These DEGs were down-regulated in Colorado, while there

were no expression differences in Antonio. Taken together, our findings suggest that Colorado

is less sensitive to HNT, therefore with no significant response to the stress.

Molecular response to 1-MCP treatment under ambient night-time

temperature (ANT)

Results of physiological traits showed that 1-MCP did not cause any negative effect under

ANT conditions for both varieties, except for spikelet fertility which decreased by 11% in

Antonio (Table 1). To understand how 1-MCP affects transcriptional regulation mechanisms,

we first looked at the different gene expressions of the two varieties under ANT conditions.

Among the 278 DEGs in Antonio with 1-MCP and without 1-MCP treatment, there were

three GO terms and three KEGG pathways enriched, including auxin-activated signaling path-

way (GO:0009734), cellular response to auxin stimulus (GO:0071365), plasma membrane

(GO:0005886), carbon fixation in photosynthetic organisms (KEGG:00710), nitrogen metabo-

lism (KEGG:00910), and glyoxylate and dicarboxylate metabolism (KEGG:00630) (S3 Table).

In Colorado there were 39 GO terms enriched among the 287 DEGs including, eight MF

terms, 22 BP terms, nine CC terms, and one KEGG pathway. The majority of the enriched GO

terms and KEGG pathway were with structure-related functions such as DNA-binding, chro-

matin assembly, protein-complex, and ribosome (S4 Table). In contrast to the results in Anto-

nio, there was no hormone signaling-related terms enriched in Colorado.

It is known that 1-MCP works as an ethylene perception inhibitor, therefore, we looked

into the DEGs list of the two varieties to see whether there were any ethylene-related genes

identified. The results showed that anther ethylene-upregulated protein ER1 (Os03g0388500)

had an increased expression level, and ethylene response factor 2 (Os09g0434500) had expres-

sion level decreased in Antonio. There were no ethylene-related DEGs identified in Colorado

(S4 Table). Interestingly, we found two ethylene-related genes, ACC oxidase, ethylene biosyn-

thesis (Os05g0149400) and similar to anther ethylene-upregulated protein ER1

(Os03g0388500) were down-regulated in Colorado under HNT without 1-MCP treatment. On

the other hand, Os03g0388500 was up-regulated in Antonio (S1 Table). Taken together we

hypothesize that Colorado may be less sensitive to ethylene or has less ethylene accumulated

under HNT. With 1-MCP application, there were only nine DEGs commonly identified within

two varieties (Fig 1A). The common DEG list showed that all the DEGs maintained the same

trend in two varieties except for S-Domain receptor-like kinase-34 (Os05g0165900), which had

expression increased in Antonio but decreased in Colorado (Table 2).

Molecular response of 1-MCP regulates HNT response

The results showed that 1-MCP induced more DEGs compared to those without 1-MCP appli-

cation (Fig 1C and 1D). Hence, we first examined 1-MCP effect under HNT condition (i.e.

identifying DEGs between with and without 1-MCP). There were 683 and 438 DEGs identified

in Antonio and Colorado, respectively (S5 Table), with 131 common DEGs identified in both

varieties. The results from enrichment analysis showed that DEGs from the two varieties were
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enriched in similar functional groups (S6 Table). The top five GO terms and KEGG pathways,

were selected based on having the smallest adjusted p-values. Our results showed that the two

varieties shared the same top five GO terms in BP and four GO terms with MF and CC (Fig 2).

Majority of these GO terms and pathways were associated with translational regulation and

structure. The only significant enriched GO term related to hormone signaling was cytokinin-

activated signaling pathway (GO:0009736) in Antonio (S6 Table). The DEG lists of the two

varieties showed that Antonio had several ethylene-related and transcription factor (TF)

DEGs, while Colorado had no ethylene-related DEGs (Table 3; S5 Table). There were two eth-

ylene biosynthesis genes, ACC Oxidase (Os09g0451000 and Os09g0451400) primarily up-regu-

lated in Antonio (Table 3). Notably, these two ethylene biosynthesis genes were different from

Anther ethylene-upregulated protein ER1 (Os03g0388500), which were up-regulated under

Table 2. Common DEGs between Antonio and Colorado after MCP application under control condition.

Gene ID Log2-fold-change Description

Antonio Colorado

Os01g0342500 0.77 1.06 Hypothetical conserved gene

Os01g0803200 0.62 0.52 Cysteine proteinase inhibitor-I

Os02g0809800 -2.07 -1.41 Root-to-shoot Phosphate (Pi) transporter

Os03g0170900 -0.78 -1.13 Sucrose transporter

Os05g0165900 0.98 -1.12 S-Domain receptor like kinase-34

Os06g0244000 -3.63 -3.95 Similar to anthranilic acid methyltransferase 3

Os07g0634400 -2.29 -2.25 HAD-superfamily hydrolase

Os09g0494600 -2.72 -1.50 Protein of unknown function DUF599 family protein

Os11g0115400 0.42 1.09 Lipid transfer protein

https://doi.org/10.1371/journal.pone.0311746.t002

Fig 2. Top five enriched GO terms in Antonio and Colorado under HNT with MCP application.

https://doi.org/10.1371/journal.pone.0311746.g002
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HNT in Antonio. In addition, ethylene-responsive transcriptional coactivator (Os06g0592500)

was the only commonly transcriptional regulator identified in both varieties and it was up-reg-

ulated in both. Our results also showed that that the heat stress transcription factor B-2b

(Os08g0546800) was up-regulated in Antonio but not in Colorado. In addition, a MADS-

box transcription factor (Os03g0753100) was largely up-regulated solely in Antonio (Table 3).

Os03g0753100 has been previously reported to be related with inflorescence and spikelet devel-

opment [53]. These expression-level differences may partly explain why 1-MCP only improved

HNT tolerance of Antonio but not Colorado.

We then investigated how HNT affects gene expression, while 1-MCP was applied to both

HNT and ANT conditions. Comparing ANT and HNT, with 1-MCP application compared to

without, the number of DEGs were three times higher for both Antonio and Colorado (Fig 1C

and 1D). There were 2779 and 2083 DEGs identified in Antonio and Colorado, respectively

(S7 Table), while there were 652 and 487 without the application of 1-MCP. Among the identi-

fied DEGs in two varieties, 600 of them were commonly identified, including eleven heat

shock proteins (HSPs) (S7 Table). We also found that the heat stress associated protein

(Os06g0682900) was up-regulated in both varieties, but it was largely increased in Antonio,

with log2-fold-change of 1.46, comparing to 0.79 in Colorado. Interestingly, Os06g0682900
was not identified as a DEG under HNT without 1-MCP (S1 Table). In agreement with the

results above, GO and KEGG enrichment analyses showed that DEGs in both varieties were

strongly associated with translational regulation and structure, except there were several GO

terms related to hydrolase activity enriched in Colorado (S7 Table). Focusing on ethylene and

TF-related DEGs, we found that Antonio and Colorado had very distinct DEG profiles.

Although both Antonio and Colorado had several down-regulated ethylene-responsive

Table 3. The expression differences of ethylene-related genes and transcription factors caused by MCP effect under HNT.

Log2-fold-change

Gene ID Description Antonio Colorado

Os01g0235700 Similar to BHLH transcription factor (Fragment). 1.24 ns

Os01g0948200 Similar to GRAS family transcription factor containing protein. -1.03 ns

Os01g0976800 GATA transcription factor, Regulation of fertility conversion of two-line hybrid tms5 mutant rice -1.01 ns

Os03g0161900 Similar to Isoform 2 of Heat stress transcription factor A-2d. 0.62 ns

Os03g0327800 NAC Family transcriptional activator, Abiotic stress response, Positive regulator of leaf senescence -1.08 ns

Os03g0650000 YABBY transcription factor, Control of seed shattering 1.84 ns

Os03g0753100 MADS-box transcription factor, Inflorescence and spikelet development 3.18 ns

Os03g0838900 Mitochodrial transcription termination factor-related domain containing protein. ns -0.53

Os03g0851000 Similar to Transcription factor homolog BTF3-like protein. -0.68 ns

Os04g0546800 Pathogenesis-related transcriptional factor and ERF domain containing protein. -0.86 ns

Os06g0592500 Similar to Ethylene-responsive transcriptional coactivator. 1.57 1.41

Os07g0679700 Transcriptional factor B3 family protein. ns 0.55

Os07g0686100 Drought stress-related bZIP transcription factor, Positive regulation of drought and oxidative tolerance ns -1.02

Os08g0546800 Similar to Heat stress transcription factor B-2b. 1.00 ns

Os09g0114500 Kinesin-4 protein with transcription regulation activity, Cell cycle and wall modification, Cell elongation by regulating GA

biosynthesis pathway

0.48 ns

Os09g0451000 ACC oxidase, Ethylene biosynthesis 1.03 ns

Os09g0451400 ACC oxidase, Ethylene biosynthesis 8.81 ns

Os10g0369600 Similar to GRAS transcription factor (Fragment). ns -0.45

Os11g0558200 R2R3-type MYB transcriptional activator, Tolerance to Pi deficiency -0.62 ns

Os12g0610600 NAC transcription factor, Negative regulation of drought tolerance -1.10 ns

https://doi.org/10.1371/journal.pone.0311746.t003
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transcription factors, they were not the same (Table 4). The only DEG identified in both varie-

ties was ACC oxidase, ethylene biosynthesis (Os05g0149400), which was down-regulated in

both varieties. However, the results also showed that there were another two ACC oxidase, eth-

ylene biosynthesis genes (Os09g0451000 and Os09g0451000) up-regulated in Antonio

(Table 4). The up-regulated ethylene biosynthesis genes could be responding to the lower sen-

sitivity of ethylene response in Antonio after the application of 1-MCP. Blocking ethylene per-

ception during crop growth can also prevent the abscission of leaves and flowers and the

yellowing of vegetables [43].

Expression patterns of genes involved in ethylene perception

The results above showed that Antonio and Colorado had distinct responsive mechanisms in

response to both HNT and 1-MCP. In addition, some genes had different expression patterns

under the interaction between HNT and 1-MCP treatments. Therefore, we examined the

DEGs regulated by the HNT and 1-MCP interaction effects. The results showed that 1106

DEGs in Antonio responded differently under different conditions, while only 482 DEGs in

Colorado behaved like that (S8 Table). Further, we found that there were several TFs, stress

and/or ethylene-related DEGs uniquely identified in Antonio, including ethylene-responsive

transcriptional coactivator (Os06g0592500), several ethylene response factors (ERF) domain

containing protein (Os01g0693400, Os04g0529100, Os04g0546800, Os06g0592500), MADS-

box TF (Os03g0752800, Os06g0108500, Os07g0108900, Os08g0112700), and senescence-associ-

ated and/or NAM, ATAF and NAC TF (Os03g0327800, Os08g0433500, Os08g0490100,

Os12g0610600). Among all TFs, only MADS-box transcription factor 15 (Os07g0108900) and

regulator for phosphate homeostasis (Os04g0671900) were also identified in Colorado. These

ethylene and senescence-related TFs were only identified in Antonio, suggesting that 1-MCP

affected ethylene signaling pathway in Antonio but not Colorado (S8 Table).

We then looked into ethylene-related DEGs and examined the normalized read count. The

results showed that these genes had similar expression level between ANT without 1-MCP

group and HNT with 1-MCP group. For example, ethylene receptor (Os05g0155200) had simi-

lar expression level in “Heat:noMCP” and “noHeat:MCP” groups, whereas “Heat:MCP” had

similar level with “noHeat:noMCP” (Fig 3). These results demonstrated how 1-MCP mitigates

HNT effects in Antonio through the ethylene-related regulation and allowed the plant to have

perception as ANT condition. We then looked into heat stress and other stress-related TFs

Table 4. The expression differences of ethylene-related genes and transcription factors of HNT effect with MCP application.

Log2-fold-change

Gene ID Description Antonio Colorado

Os03g0182800 Similar to Ethylene responsive element binding factor3 (OsERF3). ns -2.26

Os03g0183000 APETALA2/ethylene-responsive element binding protein 125, Transcription regulator, Positive regulator of grain length -1.35 ns

Os03g0183300 Pathogenesis-related transcriptional factor and ERF domain containing protein. -0.59 ns

Os03g0388500 Similar to Anther ethylene-upregulated protein ER1 (Fragment). ns -0.75

Os04g0546800 Pathogenesis-related transcriptional factor and ERF domain containing protein. -1.60 ns

Os05g0149400 ACC oxidase, Ethylene biosynthesis -1.13 -0.98

Os09g0286600 Pathogenesis-related transcriptional factor and ERF domain containing protein. -0.73 ns

Os09g0287000 Similar to Ethylene-responsive transcription factor 5 (Ethylene-responsive element binding factor 5) (EREBP-5) (AtERF5). -1.85 ns

Os05g0316800 Similar to Ethylene-responsive transcription factor 9 (Ethylene-responsive element binding factor 9) (EREBP-9) (AtERF9). -0.93 ns

Os09g0434500 Similar to Ethylene response factor 2. ns 0.90

Os09g0451000 ACC oxidase, Ethylene biosynthesis 1.17 ns

Os09g0451400 ACC oxidase, Ethylene biosynthesis 2.28 ns

https://doi.org/10.1371/journal.pone.0311746.t004

PLOS ONE Transcriptome profiling of rice under high night temperature stress

PLOS ONE | https://doi.org/10.1371/journal.pone.0311746 October 10, 2024 11 / 19

https://doi.org/10.1371/journal.pone.0311746.t004
https://doi.org/10.1371/journal.pone.0311746


that responded to the interaction between HNT and 1-MCP. There were two expression pat-

terns for these genes. First, heat stress transcription factor A-2d (Os03g0161900) had lower

expression level in “Heat:noMCP” but with much higher expression level in the rest three con-

ditions (Fig 4). The second pattern is that gene expressed similarly in “Heat:MCP” and

“noHeat:noMCP”, vice versa. For instance, heat stress associated protein (Os06g0682900) had

a similar pattern in “Heat:MCP” and “noHeat:noMCP” groups, while “Heat:MCP” had the

highest expression level among all four combinations. There was one TF that showed higher

expression level in “Heat:noMCP” and “noHeat:MCP” groups- WRKY TF64 (Os12g0116700).

The WRKY family proteins are a class of plant-specific TFs that are involved in several stress

response pathways [54, 55]. It has been reported previously in rice that these proteins were

mainly involved with pathogen defense regulation. However, based on our results, WRKY

TF64 may play a role as a negative regulator in response to HNT in Antonio. Another thing to

note is that the response mechanism of HNT condition may be different from commonly

defined heat stress. Common heat stress occurs during both daytime and night-time and has

significant impact on membrane dysfunction, protein denaturation, nucleotide damage, and

changes in lipid metabolism [13, 56]. On the contrary, other than accumulation of ethylene,

HNT condition can also increase the daytime leaf photosynthetic rates (Pn) in the following

day by reducing carbohydrate-induced feedback inhibition of photosynthesis [6, 57].

Ethylene is known to play significant roles in plant growth regulation and overall resilience

to stress. For plant growth regulation, ethylene plays dual roles in both promoting and inhibit-

ing growth depending on the species and concentration. For instance, it inhibits primary root

and leaf growth, but it can also promote the growth of young leaves in the presence of very low

ethylene concentrations in bluegrass and sunflowers [58]. Ethylene biosynthesis genes pro-

mote ethylene accumulation in roots, which inhibits root elongation and promotes the forma-

tion of shallow roots. While more shallow roots may help plants survive under stress, they are

not favorable for the uptake of water and nitrogen, therefore frequently resulting in decreased

yield [59]. In rice, ethylene’s impact on stress responses is also mediated through its

Fig 3. Ethylene-related differentially expressed genes (DEGs) under 1-MCP treatment and HNT interaction effect in Antonio.

https://doi.org/10.1371/journal.pone.0311746.g003
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interactions with other plant hormones, such as auxin, jasmonic acid, gibberellin, and abscisic

acid [60], as well as downstream signaling pathways such as CBF/DREB1 (C-repeat binding fac-

tor/dehydration-responsive element-binding factor) [61], which influence both short-term

stress responses and long-term developmental outcomes. For example, the Submergence 1

(Sub1), an ERF TF-encoding gene, enhances the plant’s tolerance to submergence during flood-

ing by suppressing the synthesis and signaling of gibberellin, which helps to restrict unnecessary

growth and elongation, conserving energy and enabling the rice plants to survive longer periods

of submergence [62]. A previous study revealed that when ethylene binding inhibitors, such as

1-MCP and silver nitrate, were applied as foliar sprays, both abscission and yellowing were

diminished. Another study also showed that changes to the ethylene signaling pathway affect

rice grain filling and grain size [63]. Therefore, we hypothesize that the improved performance

of Antonio under HNT with the application of 1-MCP was due to the inhibition of ethylene

response pathways. Further studies, such as precisely knocking out or regulating the expression

levels of individual DEGs using CRISPR gene editing, would be highly beneficial to explore the

mechanisms of HNT response, with or without the application of 1-MCP. Additionally, a

detailed comparative genomic analysis between the two rice varieties would also be advanta-

geous for narrowing down potential targets for future breeding programs.

Identification of hub genes

The top 20 hub genes were identified from DEGs of different comparisons (Fig 5; S9 Table).

Due to the complex relationship between DEGs, some networks of Antonio comparisons were

unable to be computed. However, the night-time temperature of 25˚C has been considered as

mild stress (optimum temperature is 21˚C; A.R. Mohammed and L. Tarpley, unpublished).

Therefore, we first looked into hub genes identified in DEG of 1-MCP treatment under 25˚C.

For Antonio, KEGG analysis suggested that the hub genes are enriched in Carbon fixation in

photosynthetic organisms, Nitrogen metabolism, Carbon metabolism, and Metabolic

Fig 4. Heat and stress-related transcription factors under 1-MCP and HNT interaction effect in Antonio.

https://doi.org/10.1371/journal.pone.0311746.g004
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pathways. On the other hand, the only enriched KEGG pathway in Colorado is Ribosome. More-

over, the top hub gene in Antonio (Os03g0786100) is glycolate oxidase, which has strong regula-

tion over photosynthesis. A previous study showed that overexpressed Os03g0786100 improved

photosynthesis and high light and high temperature response in rice [64]. No common hub genes

were identified from DEGs of 30˚C vs. 25˚C for the two varieties. For Antonio, the hub genes are

enriched in amino acid metabolism and degradation pathways. In contrast, Colorado has hub

genes enriched in stress-responsive pathways including phenylpropanoid biosynthesis and bio-

synthesis of secondary metabolites. Phenylpropanoid biosynthesis has been reported to be related

to plant defense mechanisms and stress tolerance regulation [65–68]. In particular, phenylpropa-

noids can enhance the production of photosynthetic pigments, nutrient uptake, and regulate

growth. As for the hub genes identified from the interaction between temperature (ANT, HNT)

and 1-MCP treatment, we noticed several of them are WD40-domain-containing genes. The

WD40 proteins have been found to be involved in a wide range of cellular processes in plants

including responses to abiotic interactions. For example, OsABT and SRWD proteins in rice and

TaWD40D in wheat [69–71]. These results may explain why Colorado was less affected by HNT

and why 1-MCP application largely improved the performance of Antonio under HNT.

Conclusions

In summary, our physiological data suggested that Antonio is a HNT susceptible variety com-

pared to Colorado. By investigating the transcriptomics data, we inferred that the HNT suscep-

tibility of Antonio is largely affected by an increased ethylene-triggered metabolism.

Therefore, with the application of 1-MCP, it mitigated the yield loss, the reduced spikelet fertil-

ity, and the decreased photosynthetic rate in Antonio. Future studies may explore the

Fig 5. Hub genes identified from DEGs of (A) Antonio ANT x ANT-MCP, (B) Colorado ANT x ANT-MCP, (C) Antonio ANT x HNT, (D) Colorado ANT x

HNT, and (E) Colorado Trt x MCP. Red color indicates a higher MCC score, meaning a more important hub gene.

https://doi.org/10.1371/journal.pone.0311746.g005
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feasibility of 1-MCP applications at the field scale. Moreover, manipulation of key regulatory

genes involved in the pathways identified in this study may assist in developing rice varieties

more tolerant to HNT conditions, which will be increasingly critical to stabilize global rice pro-

duction under the more extreme climate scenarios expected in the next few decades.
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