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ABSTRACT Leafspot is one of the major diseases of peanut (4rachis hypogaea L.) that can cause more than 50% yield loss. The
objective of this study was to identify and map quantitative trait loci (QTLs) for resistance to leafspot disease. An F».s recombinant
inbred line (RIL) population, derived from a released cultivar Tamrun OL07 and a highly tolerant breeding line Tx964117, were used
as a mapping population. A total of 90 RILs were planted for disease phenotyping in Yoakum, Texas in 2010 and 2012. A genetic map
spanning the 20 linkage groups was developed using 1,211 SNP markers based on double digest restriction-site associated DNA
sequencing (ddRAD-seq). A total of six quantitative trait loci (QTLs) were identified, with LOD score values of 3.2-5.0 and phenotypic
variance explained ranging from 11%-24%. Major QTLs identified in this study may be used as potential targets for peanut

improvement to leafspot disease through molecular breeding.
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INTRODUCTION

Peanut (Arachis hypogaea L.) is an important legume
crop, which provides excellent nutrient resources with
high oil (40-60%), protein (20-30%), and carbohydrate
(10-20%) content (Mallikarjuna and Varshney 2014).
It is planted on more than 25 million hectares world-
wide and produced more than 42 million tons in 2016,
and the production of peanut is increasing. Peanut is
also the third largest major oilseed in the world
(https://apps.fas.usda.gov/psdonline/circulars/production.
pdf). The USA accounts for 6% peanut production and
Texas is the fourth largest state for peanut production in the
country with 10% of U.S. peanut production (http://usda.
mannlib.cornell.edu/usda/current/CropProd/CropProd-04
-11-2017.pdf; https://www.nass.usda.gov/Quick Stats/Ag

Overview/ stateOverview.php?state=texas).

The foliar disease leafspot, caused by Cercospora
arachidicola (early leafspot) or Cercosporidium perso-
natum (late leafspot), is one of the major diseases of peanut
across the world, which can cause 50% or more yield losses
in peanut production (Subrahmanyam et al. 1984).
Chemical management such as fungicide spray is the most
common method to control the prevalence of the diseases
in the field. However, breeding an elite cultivar with
resistance to these diseases would be a more sustainable
solution.

Peanut is an allotetraploid crop (AABB, 2n = 4x = 40)
hybridized naturally from two diploid wild species, 4.
duranesis (AA) and A. ipaensis (BB). The A and B
genomes are similar in size. Peanut molecular genetic and
genomic studies have lagged behind compared to other
major crops, such as rice, due to its large genome size of 2.8
Gb with highly repetitive DNA content, narrow genetic
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diversity, and low DNA polymorphism rates (Mallikarjuna
and Varshney 2014). Thus far, most of QTL studies on
peanuts have been performed using RFLP, RAPD or SSR
markers (Foncéka et al. 2009; Hong et al. 2010; Khedikar
et al. 2010; Sujay et al. 2012; Wang et al. 2013; Burow et
al. 2014).

Previous reports indicated that leafspot resistance is
controlled by multiple genes (Green and Wynne 1986) and
several QTLs for tolerance to this disease identified using
SSR markers have been reported in various RIL
populations (Khedikar ez al. 2010; Sujay et al. 2012; Wang
et al. 2013; Sukruth et al. 2015). The objective of our
current study is to precisely map QTLs conferring peanut
leafspot resistance using high density sequence-based SNP
marker genotyping by double digest restriction-site
associated DNA sequencing (ddRAD-seq) (Baird et al.
2008; Peterson et al. 2012). A RIL population derived from
a released cultivar, Tamrun 0L07, a runner type cultivar
having high yield, high oleic to linoleic fatty acid ratio
(O/L) with moderate resistance to tomato spotted wilt virus
(TSWYV) and Sclerotinia blight (Baring ef al. 2006), and a
breeding line Tx964117, having high level of resistance to
early and late leafspot but having average yield potential,
poor percentage of total sound mature kernels (TSMK),
normal O/L fatty acid ratio and low level of resistance to
TSWYV and Sclerotinia blight, were used for this study.
Several major QTLs for resistance to leafspot detected in
this study can be used as possible targets for future
molecular breeding efforts to enhance leafspot resistance in

peanut.

MATERIALS AND METHODS

Plant materials

A cross was made to transfer resistance for early and late
leafspot into a high oleic multiple disease resistant cultivar.
A high oleic released cultivar Tamrun OL07, with high
yield potential and resistance for TSWV and Sclerotinia
blight was used as the female parent, and breeding line
Tx964117 which has resistance to early and late leafspot
(unpublished data) was used as the male parent for this

cross. A total of 90 F, seeds derived from a single F,

individual were advanced in a greenhouse in College
Station, Texas during 2007 to develop a RIL mapping

population.

Field experiments and disease evaluation

Phenotyping was conducted in 2010 as F»:s lines and
2012 as Fj; lines in Yoakum, Texas. This experimental
field station has an average of 21-35°C daytime tem-
perature and 10.2 cm precipitation per month during May
to October, the growing season for peanut in this region.
Both experiments were conducted by randomized com-
plete block design (RCBD) with three replications. Plots
were 2-rows wide measuring 1.83 m wide by 3.05 m in
length. Both parents were replicated five times as controls
in each replication in both years.

The experimental field station in Yoakum has a history
of both early and late leafspot and has been used as a
leafspot screening nursery for over thirty years. Hence,
leafspot screening was performed without any artificial
inoculation. Plots were planted in late June and additional
late evening irrigations were conducted during the last
quarter of the growing season to make the environment
more conducive for the development of the disease. The
majority of symptoms were of early leaf spot and these
were visually scored from 1-10 according to Florida scale
for peanut leafspot (Chiteka e al. 1988). Plots were rated at
approximately 120 day after planting (DAP), and at harvest
which was approximately 140 DAP. The final rating was
used for the purpose of this study. Score 1 indicates no
symptom, while score 10 indicates the plant is dead.

Genotyping

For DNA extraction, 90 RILs and the two parents were
planted at the Borlaug Center greenhouse in Texas A&M
University, College Station, Texas. DNA was extracted
from 3-5 week-old peanut unexpanded leaves. A modified
CTAB method was used to obtain high quality of DNA
(Doyle 1987), where 2% CTAB, 100 mM solid Tris, 700
mM NaCl, 20 mM EDTA, 0.9% sodium bisulfate, 4%
polyvinylpyrrolidone (PVP-40) and 0.5% p-mercapto-
ethanol were used. Prior to DNA library preparation, 4 pL
RNase was added to each sample and incubated at room

temperature for 1 hour. All DNA samples then were
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incubated in 65°C water bath to stop the RNase digestion.

Genotyping for the mapping population and both parents
was performed using the next-generation sequence-based
genotyping method, ddRAD-seq (Peterson et al. 2012).
Library preparation and sequencing were performed at the
Genomic and Bioinformatics Service, Texas A&M
AgriLife Research. Library preparation was performed
according to Peterson et al. (2012). Pstl and MiuCl
restriction enzymes were used to prepare the libraries and
[1lumina HiSeq 2500v4 platform was used for sequencing.

Raw sequencing reads were first trimmed to remove low
quality bases with quality score less than 20 on the ends of
reads; then reads with 30% or more bases showing low
quality score (Q<15) were removed. Two diploid wild
type A. duranensis and A. ipaensis genomes were
downloaded from PeanutBase (https://peanutbase.org/) as
genome A and B, respectively, to build a tetraploid
reference genome. Reads were sorted by individual sample
and aligned to reference genome using the Bowtie2
(Langmead and Salzberg 2012) with default parameters for
end-to-end mode. Local re-alignment was performed after
aligning to reference using GATK if any Indels were
occurred in the alignments. Low mapping quality reads
with MQ less than 5 were removed. Single-nucleotide
polymorphism was calling when there were
polymorphisms between the two parents and minor allele
frequency (MAF) greater than 0.05.

Linkage map construction and QTL analysis

The genetic map was constructed by MSTMARP software
(Wu et al. 2008). First, SNP markers were assigned to
chromosomes based on the mapping locations; then
Kosambi mapping function was used for calculating
recombinant frequency to genetic distance and RIL6 was
set as the population type. To remove markers with high
genotyping errors or miss-assign of chromosomes, the “no

mapping distance threshold” was set at 15 and “no mapping

size threshold” was set at 2, as suggested by the authors of
MSTMAP.

Windows QTL cartographer 2.5 software (Wang et al.
2012) was used to perform QTL analysis with Ril cross
type (recombinant inbred line, derived by selfing). Interval
mapping (IM) and composite interval mapping (CIM) were
performed using Kosambi function. For CIM, forward and
backward regression method was used with window size of
10 cM. Five markers were set for background control with
F-in and F-out equal to 0.01 selection criteria. A LOD value
of 3.0 was used as significant threshold to declare the QTL.

RESULTS

Disease severity in different years

Due to the significance of year effect in analysis of
variance (ANOVA) for both leafspot diseases, the data
were analyzed separately. The distributions of leafspot
disease score were similar in 2010 and 2012, and the range
was 2-8. Transgressive segregation was observed in both
years, although it was more obvious in 2012 (Fig. 1).
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Fig. 1. Disease score of leafspot in Yoakum, Texas in
2010 and 2012. The score of disease ranges from
1-10. Score 1 indicates no symptom, while score
10 indicates the plant is dead.

Table 1. Descriptive statistics for leafspot disease symptom scoring in the RIL mapping population in Yoakum Texas

in 2010 and 2012.

Year Range Mean SD CV (%) H’
2010 2.7-1.0 4.6 0.68 14.8 0.5
2012 2.3-8.0 5.0 0.91 18.2 0.6
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Disease scores for the susceptible parent Tamrun OLO7
were 6.8 and 6.9, in 2010 and 2012, respectively. On the
other hand, the resistant parent Tx964117 disease scores
were 4.3 and 4.1 in 2010 and 2012, respectively. In 2010,
leafspot infection was mild, only 2 lines were identified
with a disease score higher than 6. In contrast, 21 lines had
leafspot disease scores higher than 6 in 2012. (Fig. 1). The
heritability of leafspot resistance was high in both years,
which were 0.5 and 0.6, respectively (Table 1).

Genetic map construction

A total 0f 260,445,423 reads were obtained from 90 F,;
progenies, including ~10 million reads generated for each
parent. After filtering, ~254 million reads were remained.
Out of 9.9 million and 8.6 million quality-filtered reads
from Tamrun OL07 and Tx964117, approximately 94.5%
and 93.8% of reads, respectively, were aligned to the two
Arachis reference genomes, A. duranensis and A. ipaensis.
A total of 19,232 SNPs were screened between two parents.
High quality SNPs markers were obtained based on two
criteria: (1) SNPs with score <30 were removed; (2) SNPs
with 10 or more missing data were removed. Based on
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Fig. 2. Linkage map of a RIL population derived from
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these criteria, a total of 17,341 SNPs markers were called.

Twenty linkage groups were constructed using MSTMAP
based on 5826 SNPs markers. Out of 5826 SNPs, 4595
SNPs were removed from the QTL analysis since they are
located in the same genetic distance as other markers. After
filtering, 1211 SNPs with unique genetic distances were
used for the genetic map. The map covered 6,382 cM in
twenty linkage groups. The average length of each linkage
group was 319 cM with 5.18 cM average distance between
two adjacent markers. For brevity, however, only linkage

groups bearing QTLs were shown (Fig. 2).

QTLs for leafspot resistance

A total of six QTLs were detected above the threshold
(LOD of 3.0) across 2010 and 2012 (Table 2). gLS14.2 was
detected by both IM and CIM in both years, the highest
LOD score value was 4.6, which was detected in 2012, and
the phenotypic variance explained (RZ) of 19%, and the
increased resistant allele came from the tolerant parent,
Tx964117. Four other QTL were detected by CIM only.
Two of the QTLs detected in 2010, ¢gLS2 and gLS14.3,
having LOD values of 5.0 and 4.0 and R” 0f 16% and 12%,
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positions of QTLs for leaf spot tolerance which are indicated by the bars.
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Table 2. QTL identified for leafspot disease resistance in the RIL mapping population in Yoakum, Texas in 2010 and

2012.

Marker closest

Year QTL Chr. Flanking markers

Resistant IM CIM

to LOD peak Allele” [Op Add. R (%) LOD Add. R* (%)

2010  gLS? 2 AraduA02 12911389  Aradu.A02 12911359 A 50 045 16
Aradu.A02 12911409

gLSI41 14  Araip.B04 131145891  Araip.B04 132742316 B 222 031 14

Araip.B04 130856881

gLSI142 14  Araip.B04 133148952  Araip.B04 133148947 B 34 036 20 44 032 15
Araip.B04 133148884

gLSI43 14  Araip.B04 4093173 Araip.B04 4093183 A 40 03 12
Araip.B04 4093186

qLS20 20 Araip.B10 57359291 Araip.B10 57359302 B 28 026 9
Araip.B10 57359345

2012 ¢LSI41 14  AraipBO4 131145891  Araip.B04 132742316 B 32 062 24

Araip.B04_ 130856881

gLSI42 14  Araip.B04 132025957  Araip.B04 132025906 B 35 057 23 46 053 19
Araip.B04 133148903

qLS16 16 Araip.B06 60189350  Araip.B06 127511362 A 37 046 11
Araip.B06 127511398

qLS19 19 Araip.B09 60598148  Araip.B09 60598127 B 48 066 20
Araip.B09 918147

qLS20 20 Araip.B10 57359291 Araip.B10 57359302 B 27 036 8

Araip.B10_ 57359345

“Allele A indicates the allele from Tamrun OL07, and B indicates the allele from Tx964117.

Ytalic indicates the QTL under LOD 3.0.

respectively, and interestingly the increased resistant allele
of both QTLs came from the susceptible parent, Tamrun
OLO07. On the other hand, of the other two QTLs detected in
2012, one of the QTLs, ¢gLS16, had the increased resistant
allele from Tamrun OL07 (LOD = 3.7, R* = 11%), while
the other, gLS19, had its increased resistant allele derived
from the tolerant parent, Tx964117 (LOD = 4.8, R* = 20%).
Only one QTL was detected by IM only, gLS74.1, and the
increased resistant allele also came from tolerant parent
Tx964117. This QTL was also detected in 2012 with LOD
score value of 3.2 and R” of 24%, but it was under the
threshold (LOD = 2.2, R’ = 14%) in 2010. Additionally,
there was a QTL, gLS20, with increased resistant allele
from Tx964117 detected by CIM in both years; however, it
was slightly under the threshold with LOD values of 2.8
and 2.7 and R” values of 9% and 8% in 2010 and 2012,
respectively (Table 2).

DISCUSSION

SNP marker distribution

In total, 1,211 SNPs markers were used to construct the
genetic map with 5.18 cM average distance between two
adjacent markers. Our results showed that compared with
the linkage maps developed using RFLP (Burow et al.
2014), RAPD (Mondal et al. 2014) and SSR markers
(Khedikar et al. 2010; Sujay et al. 2012; Wang et al. 2013),
next-generation sequencing (NGS) based genotyping does
significantly increase the marker density and mapping
resolution. However, the marker density varies across
regions, which may affect the resolution for the QTL

detection.

QTLs for leafspot resistance

The current study revealed six QTLs related to leafspot
disease resistance with LOD values ranging from 3.2-5.0
and R” ranging from 11%-24% (Table 2). The results
indicate that the resistance of leafspot is controlled by both
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major and minor QTLs. This finding was similar to a
previous QTL study reported by Wang et al. (2013) in
which the QTLs could explain 6-21% of the contribution to
leafspot resistance. Additionally, one QTL, ¢LS20 was
detected in both years, but slightly under the threshold.
Even though the size of our mapping population was
sufficient to perform a QTL study, it was in the small side.
Increasing the number of the RILs in the mapping
population would increase the power of the QTL detection
(Vales et al. 2005; Ferreira 2006) which could potentially
increase the statistical significance of gLS20. Considering
that this QTL was detected in both years this QTL could be
a stable QTL, albeit with a small effect.

Our results also indicated that the resistant alleles not
only came from the resistant parent Tx964117, but also
from Tamrun OLO7. This phenomenon could contribute to
the transgressive segregation observed in the mapping
population (as seen in Fig. 1). For example, ¢LS2 and
qLS14.3, which were detected by CIM in 2010, had the
allele for resistance from Tamrun OL07. Likewise, gLS16
detected in 2012 possessed the resistant allele from Tamrun
OLO07 as well. This phenomenon, where the “good alleles”
come from the “bad” parents is not uncommon in many
QTL studies in different crops. An extreme example is the
detection of a large-stable QTL for drought in rice, where
the QTL for increased yield under drought, ¢t/12.1, was
derived from the susceptible parent, Way Rarem, suggesting
an epistatic effect (Bernier et al. 2007). Interestingly, in our
study, all QTLs with increased resistant allele coming from
the resistant parent Tx964117 were detected in both years,
except for gLS19, which indicates more stable QTLs which

are desirable for marker-assisted breeding. However, other

QTLs that were detected only in a single year, might be still
useful in certain environments, although they might only be
expressed by the triggers of a certain level of disease
severity or specific environmental factors.

Three of the most resistant RILs (no. 7505, 7514, and
7532) and three of the most susceptible RILs (no. 7511,
7556, 7574) in both years were also further examined for
their QTL allele combinations (Table 3). The results
showed that RILs that appeared to be resistant to leafspot
possess more resistance alleles compared to their
counterparts. This indicates that QTL pyramiding of
several selected loci may potentially enhance resistance, as
seen in many other crops, such as QTL pyramiding for
bacterial leaf blight resistance in rice (Huang et al. 1997).
Interestingly, all the most tolerant and susceptible entries
carry the tolerant allele of ¢LS79, which is from Tx964117
(Table 3). This may partly explain why the most suscep-
tible entries were still more resistant than susceptible
parent, especially in 2010.

Unfortunately, QTL comparisons with previous studies
cannot be directly performed due to the different types of
markers used and lack of information of the physical
positions of the markers on the chromosomes. Nonetheless,
selected major QTLs identified in this study can be further
confirmed for their use in molecular breeding to enhance
resistance to leafspot disease, as it was performed
previously for other peanut diseases, such as root-knot
nematode and rust resistance (Burow et al. 2014; Varshney
et al. 2014). Transferring one or more of these QTLs to
different genetic backgrounds and developing near-isogenic
lines (NILs) will help validate the usefulness of these loci

for future breeding programs.

Table 3. Allelic combination of leafspot resistant QTLs for three of the most resistant and the most susceptible entries.

Ent Disease score qLSZZ) qLS14.1 qLS14.2 qLS14.3 qLS16 qLS19 qLS20
y 2010 2012 (2010) (2010, 2012) (2010, 2012) (2012) (2012) (2012) (2010, 2012)
7505 2.7 2.3 + + + + = + -
7514 33 3 + + + + - + -
7532 3 4 + + + + + + -
7511 6 8 ? - + + - + -
7556 6 7 - + + - - + -
7574 6.7 6.3 - - - - - + -
Z)"+", """ and "?" indicate for plant with resistant allele, non-resistant allele, and missing data for a particular QTL.
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