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Abstract Sclerotinia blight caused by Sclerotinia

minor (Jagger) is a significant threat to peanut

production; therefore varietal improvement toward

this disease is needed. To date, there have been no

reported quantitative trait locus (QTL) associated with

Sclerotinia blight resistance in peanut. Hence, the

objective of this study was to identify QTLs for

Sclerotinia blight resistance. A total of 90 F2:6
recombinant inbred lines, derived from a released

cultivar Tamrun OL07 and a breeding line Tx964117,

were used as mapping population and field experi-

ments were conducted in 2010, 2012 and 2018 at the

Texas A&M AgriLife Research and Extension Center

at Stephenville, Texas. A genetic map was developed

using 1211 SNP markers based on double digest

restriction-site associated DNA sequencing (ddRAD-

Seq). In total, seven QTLs were identified, two QTLs

from 2010 and five QTLs from 2018, with LOD score

values of 3.2 to 7.2 and explaining 6.6–25.6%

phenotypic variance. Among these QTLs, three were

detected in common by WinQTLCart and R/qtl.

Interestingly, one of the QTLs coincides with a

previously reported peanut Leaf spot resistance

QTL. The findings from this study not only provide

insights into disease resistant QTLs in peanut but can

also be used as potential targets for breeding programs

to enhance Sclerotinia blight resistance through

molecular breeding.
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Introduction

Peanut (Arachis hypogaea L.) accounts for more than

$1.6 billion in value in the United States and is also the

third most widely grown oilseed crop in the world.

Peanut seeds have high nutritional values, with high

oil (40-60%) and protein (20–30%) contents (Mal-

likarjuna and Varshney 2014). A soil-borne fungal

disease Sclerotinia blight, caused by Sclerotinia

minor, is one of the most destructive plant pathogens

worldwide. S. minor is capable of infecting around one

hundred host plants and causes substantial damage and

yield reduction of 10% to 75% of various crops such as

lettuce, chicory, green bean, sunflower, and peanut

(Melzer et al. 1997). S. minor was first identified on
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peanut in Australia in 1948, was first reported in the

United States in Virginia in 1971, and the first

outbreak in Texas was in 1981 (Crutcher et al. 2018;

Goldman et al. 1995; Melzer et al. 1997; Phipps 1995).

By 1982, Sclerotinia blight became the most important

disease of peanut in Virginia (Porter and Melouk

1997) and has continued to spread across the US

peanut belt. The first Sclerotinia blight in Arkansas

was reported in 2014 on runner peanut (Faske et al.

2014). The strategies used to control Sclerotinia blight

on peanut include fungicide spray and canopy pruning

(Butzler et al. 1998; Grichar and Woodward 2016).

However, both methods can only reduce the rate of

disease progress. The more efficient way to mitigate

the yield losses caused by this disease is development

of disease resistant cultivars.

Peanut is an allotetraploid crop (AABB,

2n = 4x = 40) which hybridized naturally from two

diploid wild species, A. duranesis (AA) and A.

ipaensis (BB). The first simple sequence repeat-based

(SSR) linkage map of cultivated peanut was developed

in the last decade (Varshney et al. 2009) and the

genome sequences of the two progenitor species and

the cultivated peanut were released in 2016 and 2017,

respectively (Bertioli et al. 2016; https://www.ncbi.

nlm.nih.gov/bioproject/PRJNA419393/). In addition,

recently, there have been several QTL studies for

peanut improvement using high-resolution single-nu-

cleotide polymorphisms (SNPs) (Clevenger et al.

2017, 2018; Han et al. 2018; Liang et al. 2017, 2018).

However, limited progress has been achieved in pea-

nut compared to other major crops due to its genome

complexity and low DNA polymorphism rates (Mal-

likarjuna and Varshney 2014). QTL mapping has been

used as one of the standard methods to identify QTLs

in many crops, including rice, wheat and peanut

(Buerstmayr et al. 2009; Gomez Selvaraj et al. 2009;

McCough and Doerge 1995). Unfortunately, to our

knowledge, there have been no whole genome QTL

studies reported for Sclerotinia blight-related traits.

Therefore, the major objectives of the present study

were to identify QTLs associated with Sclerotinia

blight resistance using the RIL population that we used

in our previous QTL mapping studies (Liang et al.

2017, 2018). With advances in sequencing technol-

ogy, SNP detection has become an efficient and

convenient method to conduct QTL mapping. We

have employed the double digest restriction-site

associated DNA sequencing (ddRAD-seq) genotyping

method, which has been used to produce genetic maps

with high density SNP markers (Baird et al. 2008;

Peterson et al. 2012). Field experiments were con-

ducted in Stephenville, Texas, in 2010, 2012, and

2018. Major QTLs detected in this study can be used

as potential targets for future molecular breeding

efforts to improve Sclerotinia blight resistance in

peanut.

Materials and methods

Plant materials

An F2:6 RIL population derived from a runner type

cultivar Tamrun OL07 and a runner type breeding line

Tx964117 were used in this study. Tamrun OL07, a

runner type released cultivar, has high yield, good

percentage of total sound mature kernels (TSMK),

high oleic to linoleic fatty acid ratio (O/L ratio), and

has moderate resistance to tomato spotted wilt virus

(TSWV) and Sclerotinia blight (Baring et al. 2006).

On the other hand, Tx964117, a Texas breeding line,

has high level of resistance to both early and late

leafspot disease, but with average yield potential, poor

percentage of TSMK, low level of resistance to

TSWV, and low level of resistance to Sclerotinia

blight. The same RILs population had been used in our

previous study to identify QTLs for leafspot resis-

tance, yield related, and grade related traits (Liang

et al. 2017, 2018).

Experimental design

Field experiments were conducted at the Texas A&M

University AgriLife Research Extension Center at

Stephenville in 2010, 2012, and 2018. Stephenville is

located in Central Texas, has an average of

25.5–35 �C daytime temperature and 7.9 cm precip-

itation per month from June to November, the grow-

ing season in this region. Plots were planted in late

June and regular irrigations were performed after

planting. In addition, at the end of the season plots

were irrigated as needed at dusk to promote fungal

growth. The Stephenville nursery is used to conduct

Sclerotinia blight disease screening for the Texas

A&M AgriLife peanut research program. The field

experiments were performed using randomized com-

plete block design (RCBD) with three replications. In
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2010 and 2012 each plot consisted of two rows

measuring 1.83 m by 3.05 m. The two parents,

Tamrun OL07 and Tx964117 were replicated five

times as controls in each replication in all 3 years. An

extremely susceptible cultivar, Langley, was also

planted in the field as a check variety. In 2018, the

same design was used except one plot measuring

1.83 m by 3.05 m were planted and only disease

ratings were collected.

Inoculation and disease rating

S. minor inoculum collected from the field from the

previous season was cultured in a growth chamber at

18–21 �C with 80–95% of humidity and used for the

inoculation in the following year. Prior to inoculation,

S. minor was propagated on sterilized whole oats

at18–21 �C with 80–95% of humidity for 21 days

until the oats were covered by fungal growth. The

infested oats were then ground using a Wiley mill and

spread evenly over the plots. The plants were inocu-

lated with S. minor approximately 90-100 days of

planting as weather permitted. Following inoculation,

the plots were irrigated each evening at dusk to

promote fungal growth. For disease rating, the symp-

toms were visually scored using a 0–10 scale, where a

score 0 indicates no symptom, while score 10 indicates

that the plant is dead. To monitor how the disease was

progressing, the plots were scored at two time points,

one at approximately 115 and 130 days after planting

or as conditions permitted. The second rating was used

for the QTL mapping in this study.

Phenotypic data analysis

Phenotypic data across 3 years were analyzed sepa-

rately. To explore the relationship of disease score

rating (DSR) from different years, Pearson correlation

test was performed. To examine the entry effect, an

ANOVA was conducted to obtain the variance com-

ponents in RStudio version 3.5.1. Broad-sense heri-

tability was calculated for disease resistance from

variance components using the following equation:

H2 ¼ r2g / r2e þ r2g

� �

where rg
2 is the genotypic variance, and re

2 is the error

variance.

Best linear unbiased estimator (BLUE) model

Due to the insignificance of entry effect in 2012, a best

linear unbiased estimation (BLUE) model was used in

2012 for obtaining a more precise DSR. The BLUE

model was defined as follows:

y ¼ Xbþ e

where X was model matrix, the vector y was DSR

observed, the vector b was estimated fixed effects,

including entry effect and block effect, and e was a

vector with random effects.

DNA collection and genotyping

As previously reported in our study (Liang et al. 2017),

a total of 90 RILs along with the two parents were

planted in a greenhouse for DNA extraction. The DNA

samples were collected from the 3 to 5-week-old

peanut unexpanded leaves. A modified cetyltrimethy-

lammonium bromide (CTAB) method was used to

obtain high quality of DNA (Doyle and Doyle 1987),

where 2% CTAB, 100 mM solid Tris, 700 mM NaCl,

20 mM EDTA, 0.9% sodium bisulfate, 4%

polyvinylpyrrolidone (PVP-40) and 0.5% b-mercap-

toethanol were used.

Genotyping was performed using the restriction site

association-based method, ddRAD-seq (Peterson et al.

2012), digesting with restriction enzymes PstI

and MluCI. The library preparation and sequencing

were performed at the Genomic and Bioinformatics

Service, Texas A&M AgriLife Research. A total of

260,445,423 raw sequencing reads were processed,

17,341 SNPs were called, and 1211 SNPs were finally

selected to construct the genetic map (Liang et al.

2017).

Genetic map construction and QTL analysis

The construction of the genetic map was performed

using MSTMAP online software (Wu et al. 2008) as

reported in our previous study (Liang et al. 2017).

Briefly, the Kosambi mapping function was used for

estimating map distance based on recombinant fre-

quency. A ‘‘no mapping distance threshold’’ was set at

15 cM, and ‘‘no mapping size threshold’’ was set at 2,

as the default setting. This genetic distance was used

for both QTL mapping tools.
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Windows QTL cartographer 2.5 software (Wang

et al. 2012) and R/qtl (Broman et al. 2003) were used

to perform the QTL analysis. In Windows QTL

cartographer 2.5, composite interval mapping (CIM)

was performed using Kosambi map function with Ri1

cross type (recombinant inbred line, derived by

selfing), and forward and backward regression method

was used with F-in and F-out equal to 0.01 selection

criteria. In R/qtl, analysis was performed by cim()

function with Kosambi map function, 0.001 error

probability, and other default settings. For both QTL

analysis, five markers were set for background control

with window size of 10 cM. A logarithm of odds

(LOD) value of 3.0 was used as the significance

threshold to declare the QTL. For QTLs detected in

more than 1 year, they were called with LOD value

above 3.0. A 1000 time-permutation test was per-

formed in both QTL mapping software packages to

obtain a more rigorous LOD threshold.

For convenience of the analysis, ten chromosomes

on A. ipaensis (B) genome were named as chromo-

some eleven to twenty according to their order in the B

genome. For example, chromosome 1 in the B

genome is noted as chromosome 11 in this study.

Results

Disease performance across years

ANOVA revealed that there was a significant year

effect across 2010, 2012, and 2018, with P B 0.001.

Therefore, all phenotypic data were analyzed sepa-

rately. The distribution of DSR had a high variance in

3 years. In 2010, 2012, and 2018, the DSR ranged

from 0 to 6.0, 0 to 0.90, and 1.0 to 9.0, with an average

of 2.6, 4.5 and 6.4, respectively, while heritability also

varied from 0.29 to 0.45 (Table 1). The average DSRs

for the susceptible parent Tx964117 were 2.8, 4.4, and

7.6, in 2010, 2012, and 2018, respectively. On the

other hand, the moderate resistant parent Tamrun

OL07 had average DSRs of 1.3, 3.4, and 7.3, in 2010,

2012, and 2018, respectively (Fig. 1). Although the

resistance between the two parents was not quite

distinct, the moderate resistant parent still had lower

DSR than the susceptible parent Tx964117. The

average yield was 1577 g per two-row plot in 2010

with a range from 590 g to 2407 g. In 2012 and 2018

only disease ratings were collected with no harvest

data being collected. In addition, since there was no

significant effect of the entry effect in ANOVA from

the 2012 data, this phenotypic data was not used for

QTL detection.

The Pearson correlation coefficients showed sig-

nificant positive correlation in all 3 years (Fig. 2). We

further examined the correlation between the first

disease rating and the second rating in 2018. With one

month apart, disease rating from the two time points

had a significant correlation of 0.66. The DSR in the

first rating had a mean of 2.4 with a range of 1.0 to 5.0,

while the second rating had a mean DSR of 6.4 with a

range of 1.0 to 9.0 (Table 1). This suggests that the

disease progressed significantly in a short period of

time.

Table 1 The average disease score (DSR), standard deviation

(SD), coefficient of variance (CV) and broad-sense heritability

(H2) for Sclerotinia disease resistance in the RIL mapping

population

Years Range Mean SD CV (%) H2

2010 0–6.0 2.6 1.54 58.6 0.31

2012 0–9.0 4.5 2.33 52.1 –a

October 2018 1.0–5.0 2.4 0.86 35.3 0.29

November 2018 1.0–9.0 6.4 1.90 29.6 0.45

aThe entry effect in 2012 was not significant; therefore, the

heritability was not shown

Fig. 1 The boxplots of disease score rating (DSR) of the RIL

population in 2010, 2012, and 2018. The red arrow indicates

DSR of the susceptible parent Tx964117, and the blue arrow

indicates DSR of the moderate resistant parent Tamrun OL07
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Genetic map and QTL analysis

A total of eight QTLs for Sclerotinia blight resistance

were detected across 3 years (Table 2). Among these

QTLs, three of them were detected by both software

packages, WinQTLCart and R/qtl. And two QTLs

were detected in more than 1 year. In 2010, two QTLs

were detected by both WinQTLCart and R/qtl, i.e. qS4

and qS14, with LOD values of 4.4 and 4.7, and R2 of

14.5% and 17.3% fromWinQTLCart; and LOD values

of 4.4 and 5.3, and R2 of 6.6% and 11.6% from R/qtl

(Table 2). qS4 was derived from the elite cultivar

Tamrun OL07; on the other hand, the susceptible

breeding line Tx964117 was the donor of qS14. There

were two QTLs detected in 2012, qS8.1 and qS14.

Notably, the two QTLs identified in 2012 were also

detected in other years. qS14 was detected in both

2010 and 2012 and by both QTL detecting software;

while qS8.1 was detected in 2012 by R/qtl, and

detected in 2018 by WinQTLCart. Six QTLs were

identified in 2018; four of them were detected by

WinQTLCart only, i.e. qS1, qS2, qS8.1 and qS20.1,

one QTL was only identified by R/qtl (qS20.2), and

another one was detected by both WinQTLCart and

Fig. 2 Phenotypic performance and Pearson correlation coef-

ficients among disease score rating (DSR) from different years.

Nov2018 indicated the second disease rating in 2018, and

Oct2018 indicated the first rating in 2018.’’***’’ for

p value\ 0.0001 according to Pearson correlation test
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R/qtl (qS8.2). There were QTLs located on chromo-

some 8 as well as chromosome 20 in a very close

distance, however, they were identified as two QTLs

due the non-overlapped QTL interval and the opposite

allelic effect (qS20.2). qS1 and qS20.2 were from the

elite parent Tamrun OL07, with LOD values of 3.7 and

3.2, and R2 of 12.0% and 11.0%, respectively. On the

other hand, qS2, qS8.1, and qS20.1 were from the

susceptible parent Tx964117, with LOD values of 3.4,

3.9, and 3.8, and R2 of 9.2%, 13%, and 25.6%,

respectively. Interestingly, the DSR decreased allele

of the largest QTL qS8.2 also came from Tx964117,

with LOD values of 5.0 and 7.2, and R-square of

15.9% and 18.3%, from WinQTLCart and R/qtl,

respectively.

Discussion

Phenotype variation

As shown in Table 1, the phenotypic variability in our

experiments was relatively high, especially in 2010

and 2012. This may be due to the experimental

conditions in Stephenville. These experiments were

conducted under field conditions instead of a well-

controlled greenhouse. Therefore, the environmental

effects such as temperature, humidity, and rainfall had

a large effect on plant growth and disease establish-

ment and progress. For example, in 2018, there was an

extended cool, rainy period that accelerated the

disease progression; on the other hand, 2010 was a

dry year with few precipitations during the growing

season that restrained the overspread of S. minor. We

also noticed that the possibility of new race(s) existed

in the field in 2018. The disease performance showed

that both resistant and susceptible parents showed

a susceptible response in 2018 (Fig. 1). A further

pathogen genomics study is required to validate the

existence of the new race(s). Moreover, box plots of

the three different experiments demonstrated that the

position of the plots in the experimental field also had

a significant effect on disease severity. Among the

three blocks used in the experiment, block #3 always

had the lowest DSR, whereas block #2 always had the

highest DSR (Fig. 3). This phenomenon is consistent

with the results from ANOVA that block effects were

significant in all 3 years. Overall, these factors might

partially explain the high phenotypic variability in this

study and a rather low correlation coefficient value

between the first and second disease ratings in 2018.

Our previous study compared the yield between an

ideal peanut production environment (without disease)

and a Sclerotinia blight screening field (Liang et al.

2018). The results showed that Sclerotinia blight

could cause a 45% yield loss, and the amount of yield

loss highly depends on the disease severity. Although

the yield difference could also be due to other

environmental effects between the two locations, the

major factor that caused the yield loss was the damage

Table 2 QTLs identified for disease score rating (DSR) of Sclerotinia blight in the RIL mapping population in 2010, 2012, and 2018

Year QTL Chr. Peak (cM) Closest marker Good Allelea WinQTLCart. R/qtl

LOD Add.b Rb (%) LOD Add. Rb(%)

2010 qS4 4 431 Aradu.A04_121130432 A 4.4* 0.4 14.5 4.4 0.27 6.6

qS14 14 82.2 Araip.B04_132742316 B 4.7* 0.43 17.3 5.3 0.36 11.6

2012 qS8.1 8 166.4 Aradu.A08_4286171 B 4.0 0.21 6.6

qS14 14 82.2 Araip.B04_132742316 B 3.2 0.28 12.1 4.1 0.26 10.8

2018 qS1 1 200.9 Aradu.A01_3241880 A 3.7 0.78 12.0

qS2 2 39.0 Aradu.A02_89841822 B 3.4 1.33 9.2

qS8.1 8 166.4 Aradu.A08_4286171 B 3.9 0.67 13.0

qS8.2 8 174.9 Aradu.A08_4286139 B 5.0 0.79 15.9 7.2* 0.71 18.3

qS20.1 20 32.3 Araip.B10_119489004 B 3.8 0.89 25.6

qS20.2 20 53 Araip.B10_57358933 A 3.2 0.58 11.0

aAllele A indicates the allele was from Tamrun OL07, while allele B was from Tx964117. Good allele means the allele reduced DSR.
b ‘‘Add.’’ indicates additive effect of QTLs. ‘‘*’’ for p-value\ 0.05 according to 1000 times permutation threshold
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to the plant. Based on the results from our experiments

in 2012 and 2018, Sclerotinia blight has caused nearly

total yield loss by the death of nearly all the plants. A

huge loss of peanut production due to Sclerotinia

blight has been previously reported (Chenault et al.

2006; Porter and Melouk 1997).

QTLs identified in this study

A total of eight QTLs associated with Sclerotinia

blight resistance were detected in this study (Table 2).

Three QTLs on chromosome A4, B14, and A8 (i.e.,

qS4, qS14, and qS8.2) had very high LOD scores,

passed threshold after permutation, and also were

detected by both WinQTLCart and R/qtl. Two of three

large QTLs were derived from the low tolerance

parent Tx964117. Interestingly, two QTLs were

detected in multiple years were also derived from

Tx964117, including qS14, which was identified in

2010 and 2012, and qS8.1, which was identified in

both 2012 and 2018. One possible reason could be that

there were some other race(s) existed in the field that

Tx964117 has better tolerance instead. The moderate

tolerance parent Tamrun OL07 was bred and evalu-

ated for the Sclerotinia blight resistance for more than

a decade (Baring et al. 2006); therefore, along with the

selection of pathogen and the existence of new race(s),

the resistance may not as good as before. This factor

could have significant impacts on phenotypic vari-

ability and may reduce the power of QTL detection.

On the other hand, this phenomenon could also due to

the interaction with the genetic background, which is

not uncommon in QTL studies for various traits in

different crops. For example, a large QTL for

increased yield in rice under drought conditions

derived from the susceptible parent has been previ-

ously reported (Bernier et al. 2007). This QTL has

been transferred through marker-assisted selection to

some elite varieties (Dixit et al. 2017; Henry et al.

2014). This may partially explain whymany progenies

had better disease resistance than the donor parent.

However, this hypothesis also requires further

investigation.

To our knowledge, only one molecular marker has

been reported associated with Sclerotinia blight resis-

tance in peanut thus far (Chenault et al. 2008). The

sequences of this SSR marker pair are pPGPseq 2E6R

(5’-CCTGGGCTGGGGTATTATTT-3’) and pPGPse-

q 2E6L (5’-TACAGCATTGCCTTCTGGTG-3’). This

marker has been used in several studies, such as the

evaluation of the U.S. peanut mini core collection

(Chenault et al. 2009). New sources for Sclerotinia

resistance have also been identified (Bennett et al. 2018;

Yol et al. 2014).ABLASTsearch has beenperformed to

identify the position of this SSR marker using the full

lengthofpPGPseq 2E6 sequence (Ferguson et al. 2004).

The sequence has a hit on chromosome A07 of cultivar

peanut Shitouqi with 98% identities and 83% coverage.

Therefore, all eight QTLs identified in this study are

novel QTLs.

Interestingly, a previous reported peanut leaf spot

disease resistance QTL qLS14.1 had the same marker

peak as qS14, which was detected in this study (Liang

et al. 2017). The beneficial allele of both qS14 and

qLS14.1 are from Tx964117. Leaf spot is a foliar

fungal disease caused by Cercospora arachidicola

(early leafspot) or Cercosporidium persoatum (late

leafspot); therefore, qS14/qLS14.1 could be a good

target QTL for future marker-assisted breeding pro-

grams. Previously, a peanut transgenic study indicated

that transgenic peanut lines with antifungal genes,

such as rice chitinase and alfalfa glucanase, had partial

resistance to Sclerotinia blight (Chenault et al. 2005).

Other than fungal resistant genes, a previous study

also showed that transferring barley oxalate oxidase

may also improve the resistance of peanut to Sclero-

tinia blight (Chenault et al. 2005; Hu et al. 2015).

Sclerotinia blight had appeared in the United States

since 1971 and was first identified in Texas in 1981

(Crutcher et al. 2018; Goldman et al. 1995). However,

no disease resistance QTLs have been identified in the

past decade. Most of the current disease resistant

studies have focused on large-effect QTLs and mainly

were qualitative loci; on the contrary, quantitative

resistance is less known (Corwin and Kliebenstein

2017). Many large-effect R genes correspond to their

specific pathogen and activate a rapid defense

response such as programmed cell death, an effective

defense mechanism against biotrophic pathogens.

However, the gene-for-gene response would not be

observed in the interaction with necrotrophic patho-

gens such as S. minor (Glazebrook 2005), since

necrotrophic pathogens indeed benefit from host cell

death. The defense mechanisms against necrotrophs

are usually controlled by hundreds of causal genes,

such as the strengthening of the cell wall, biosynthesis

of defense compounds, and the interaction between

different mechanisms such as the JA signaling
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pathway and camalexin production (Corwin and

Kliebenstein 2017; Glazebrook 2005). These might

explain why there were no QTL studies of Sclerotinia

blight being previously reported. Our study provides

the first QTL identification for Sclerotinia blight

resistance using high-resolution SNPs markers. Some

of these QTLs can be used as potential targets for

varietal improvement.
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