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Abstract Sclerotinia blight caused by Sclerotinia
minor (Jagger) is a significant threat to peanut
production; therefore varietal improvement toward
this disease is needed. To date, there have been no
reported quantitative trait locus (QTL) associated with
Sclerotinia blight resistance in peanut. Hence, the
objective of this study was to identify QTLs for
Sclerotinia blight resistance. A total of 90 F,gq
recombinant inbred lines, derived from a released
cultivar Tamrun OL07 and a breeding line Tx964117,
were used as mapping population and field experi-
ments were conducted in 2010, 2012 and 2018 at the
Texas A&M AgriLife Research and Extension Center
at Stephenville, Texas. A genetic map was developed
using 1211 SNP markers based on double digest
restriction-site associated DNA sequencing (ddRAD-
Seq). In total, seven QTLs were identified, two QTLs
from 2010 and five QTLs from 2018, with LOD score
values of 3.2 to 7.2 and explaining 6.6-25.6%
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phenotypic variance. Among these QTLs, three were
detected in common by WinQTLCart and R/qtl.
Interestingly, one of the QTLs coincides with a
previously reported peanut Leaf spot resistance
QTL. The findings from this study not only provide
insights into disease resistant QTLs in peanut but can
also be used as potential targets for breeding programs
to enhance Sclerotinia blight resistance through
molecular breeding.
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Introduction

Peanut (Arachis hypogaea L.) accounts for more than
$1.6 billion in value in the United States and is also the
third most widely grown oilseed crop in the world.
Peanut seeds have high nutritional values, with high
oil (40-60%) and protein (20-30%) contents (Mal-
likarjuna and Varshney 2014). A soil-borne fungal
disease Sclerotinia blight, caused by Sclerotinia
minor, is one of the most destructive plant pathogens
worldwide. S. minor is capable of infecting around one
hundred host plants and causes substantial damage and
yield reduction of 10% to 75% of various crops such as
lettuce, chicory, green bean, sunflower, and peanut
(Melzer et al. 1997). S. minor was first identified on
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peanut in Australia in 1948, was first reported in the
United States in Virginia in 1971, and the first
outbreak in Texas was in 1981 (Crutcher et al. 2018;
Goldman et al. 1995; Melzer et al. 1997; Phipps 1995).
By 1982, Sclerotinia blight became the most important
disease of peanut in Virginia (Porter and Melouk
1997) and has continued to spread across the US
peanut belt. The first Sclerotinia blight in Arkansas
was reported in 2014 on runner peanut (Faske et al.
2014). The strategies used to control Sclerotinia blight
on peanut include fungicide spray and canopy pruning
(Butzler et al. 1998; Grichar and Woodward 2016).
However, both methods can only reduce the rate of
disease progress. The more efficient way to mitigate
the yield losses caused by this disease is development
of disease resistant cultivars.

Peanut is an allotetraploid crop (AABB,
2n = 4x = 40) which hybridized naturally from two
diploid wild species, A. duranesis (AA) and A.
ipaensis (BB). The first simple sequence repeat-based
(SSR) linkage map of cultivated peanut was developed
in the last decade (Varshney et al. 2009) and the
genome sequences of the two progenitor species and
the cultivated peanut were released in 2016 and 2017,
respectively (Bertioli et al. 2016; https://www.ncbi.
nlm.nih.gov/bioproject/PRINA419393/). In addition,
recently, there have been several QTL studies for
peanut improvement using high-resolution single-nu-
cleotide polymorphisms (SNPs) (Clevenger et al.
2017, 2018; Han et al. 2018; Liang et al. 2017, 2018).
However, limited progress has been achieved in pea-
nut compared to other major crops due to its genome
complexity and low DNA polymorphism rates (Mal-
likarjuna and Varshney 2014). QTL mapping has been
used as one of the standard methods to identify QTLs
in many crops, including rice, wheat and peanut
(Buerstmayr et al. 2009; Gomez Selvaraj et al. 2009;
McCough and Doerge 1995). Unfortunately, to our
knowledge, there have been no whole genome QTL
studies reported for Sclerotinia blight-related traits.

Therefore, the major objectives of the present study
were to identify QTLs associated with Sclerotinia
blight resistance using the RIL population that we used
in our previous QTL mapping studies (Liang et al.
2017, 2018). With advances in sequencing technol-
ogy, SNP detection has become an efficient and
convenient method to conduct QTL mapping. We
have employed the double digest restriction-site
associated DNA sequencing (ddRAD-seq) genotyping
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method, which has been used to produce genetic maps
with high density SNP markers (Baird et al. 2008;
Peterson et al. 2012). Field experiments were con-
ducted in Stephenville, Texas, in 2010, 2012, and
2018. Major QTLs detected in this study can be used
as potential targets for future molecular breeding
efforts to improve Sclerotinia blight resistance in
peanut.

Materials and methods
Plant materials

An F,.¢ RIL population derived from a runner type
cultivar Tamrun OL0O7 and a runner type breeding line
Tx964117 were used in this study. Tamrun OLO7, a
runner type released cultivar, has high yield, good
percentage of total sound mature kernels (TSMK),
high oleic to linoleic fatty acid ratio (O/L ratio), and
has moderate resistance to tomato spotted wilt virus
(TSWV) and Sclerotinia blight (Baring et al. 2006).
On the other hand, Tx964117, a Texas breeding line,
has high level of resistance to both early and late
leafspot disease, but with average yield potential, poor
percentage of TSMK, low level of resistance to
TSWV, and low level of resistance to Sclerotinia
blight. The same RILs population had been used in our
previous study to identify QTLs for leafspot resis-
tance, yield related, and grade related traits (Liang
et al. 2017, 2018).

Experimental design

Field experiments were conducted at the Texas A&M
University AgriLife Research Extension Center at
Stephenville in 2010, 2012, and 2018. Stephenville is
located in Central Texas, has an average of
25.5-35 °C daytime temperature and 7.9 cm precip-
itation per month from June to November, the grow-
ing season in this region. Plots were planted in late
June and regular irrigations were performed after
planting. In addition, at the end of the season plots
were irrigated as needed at dusk to promote fungal
growth. The Stephenville nursery is used to conduct
Sclerotinia blight disease screening for the Texas
A&M AgriLife peanut research program. The field
experiments were performed using randomized com-
plete block design (RCBD) with three replications. In
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2010 and 2012 each plot consisted of two rows
measuring 1.83 m by 3.05 m. The two parents,
Tamrun OLO7 and Tx964117 were replicated five
times as controls in each replication in all 3 years. An
extremely susceptible cultivar, Langley, was also
planted in the field as a check variety. In 2018, the
same design was used except one plot measuring
1.83 m by 3.05 m were planted and only disease
ratings were collected.

Inoculation and disease rating

S. minor inoculum collected from the field from the
previous season was cultured in a growth chamber at
18-21 °C with 80-95% of humidity and used for the
inoculation in the following year. Prior to inoculation,
S. minor was propagated on sterilized whole oats
at18-21 °C with 80-95% of humidity for 21 days
until the oats were covered by fungal growth. The
infested oats were then ground using a Wiley mill and
spread evenly over the plots. The plants were inocu-
lated with S. minor approximately 90-100 days of
planting as weather permitted. Following inoculation,
the plots were irrigated each evening at dusk to
promote fungal growth. For disease rating, the symp-
toms were visually scored using a 0—10 scale, where a
score 0 indicates no symptom, while score 10 indicates
that the plant is dead. To monitor how the disease was
progressing, the plots were scored at two time points,
one at approximately 115 and 130 days after planting
or as conditions permitted. The second rating was used
for the QTL mapping in this study.

Phenotypic data analysis

Phenotypic data across 3 years were analyzed sepa-
rately. To explore the relationship of disease score
rating (DSR) from different years, Pearson correlation
test was performed. To examine the entry effect, an
ANOVA was conducted to obtain the variance com-
ponents in RStudio version 3.5.1. Broad-sense heri-
tability was calculated for disease resistance from
variance components using the following equation:

H* = oé/ (aﬁ—&—aﬁ,)

where Gé is the genotypic variance, and ¢ is the error
variance.

Best linear unbiased estimator (BLUE) model

Due to the insignificance of entry effect in 2012, a best
linear unbiased estimation (BLUE) model was used in
2012 for obtaining a more precise DSR. The BLUE
model was defined as follows:

y=Xp+e

where X was model matrix, the vector y was DSR
observed, the vector B was estimated fixed effects,
including entry effect and block effect, and € was a
vector with random effects.

DNA collection and genotyping

As previously reported in our study (Liang et al. 2017),
a total of 90 RILs along with the two parents were
planted in a greenhouse for DNA extraction. The DNA
samples were collected from the 3 to 5-week-old
peanut unexpanded leaves. A modified cetyltrimethy-
lammonium bromide (CTAB) method was used to
obtain high quality of DNA (Doyle and Doyle 1987),
where 2% CTAB, 100 mM solid Tris, 700 mM NaCl,
20 mM EDTA, 09% sodium bisulfate, 4%
polyvinylpyrrolidone (PVP-40) and 0.5% B-mercap-
toethanol were used.

Genotyping was performed using the restriction site
association-based method, ddRAD-seq (Peterson et al.
2012), digesting with restriction enzymes Pstl
and MIuCI. The library preparation and sequencing
were performed at the Genomic and Bioinformatics
Service, Texas A&M AgriLife Research. A total of
260,445,423 raw sequencing reads were processed,
17,341 SNPs were called, and 1211 SNPs were finally
selected to construct the genetic map (Liang et al.
2017).

Genetic map construction and QTL analysis

The construction of the genetic map was performed
using MSTMAP online software (Wu et al. 2008) as
reported in our previous study (Liang et al. 2017).
Briefly, the Kosambi mapping function was used for
estimating map distance based on recombinant fre-
quency. A “no mapping distance threshold” was set at
15 cM, and “no mapping size threshold” was set at 2,
as the default setting. This genetic distance was used
for both QTL mapping tools.
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Windows QTL cartographer 2.5 software (Wang
et al. 2012) and R/qtl (Broman et al. 2003) were used
to perform the QTL analysis. In Windows QTL
cartographer 2.5, composite interval mapping (CIM)
was performed using Kosambi map function with Ril
cross type (recombinant inbred line, derived by
selfing), and forward and backward regression method
was used with F-in and F-out equal to 0.01 selection
criteria. In R/qtl, analysis was performed by cim()
function with Kosambi map function, 0.001 error
probability, and other default settings. For both QTL
analysis, five markers were set for background control
with window size of 10 cM. A logarithm of odds
(LOD) value of 3.0 was used as the significance
threshold to declare the QTL. For QTLs detected in
more than 1 year, they were called with LOD value
above 3.0. A 1000 time-permutation test was per-
formed in both QTL mapping software packages to
obtain a more rigorous LOD threshold.

For convenience of the analysis, ten chromosomes
on A. ipaensis (B) genome were named as chromo-
some eleven to twenty according to their order in the B
genome. For example, chromosome 1 in the B
genome is noted as chromosome 11 in this study.

Results
Disease performance across years

ANOVA revealed that there was a significant year
effect across 2010, 2012, and 2018, with P < 0.001.
Therefore, all phenotypic data were analyzed sepa-
rately. The distribution of DSR had a high variance in
3 years. In 2010, 2012, and 2018, the DSR ranged
from 0 t0 6.0, 0 to 0.90, and 1.0 to 9.0, with an average
of 2.6, 4.5 and 6.4, respectively, while heritability also
varied from 0.29 to 0.45 (Table 1). The average DSRs
for the susceptible parent Tx964117 were 2.8, 4.4, and
7.6, in 2010, 2012, and 2018, respectively. On the
other hand, the moderate resistant parent Tamrun
OLO7 had average DSRs of 1.3, 3.4, and 7.3, in 2010,
2012, and 2018, respectively (Fig. 1). Although the
resistance between the two parents was not quite
distinct, the moderate resistant parent still had lower
DSR than the susceptible parent Tx964117. The
average yield was 1577 g per two-row plot in 2010
with a range from 590 g to 2407 g. In 2012 and 2018
only disease ratings were collected with no harvest
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Table 1 The average disease score (DSR), standard deviation
(SD), coefficient of variance (CV) and broad-sense heritability
(H?) for Sclerotinia disease resistance in the RIL mapping
population

Years Range Mean SD CV (%) H?
2010 0-6.0 2.6 1.54 58.6 0.31
2012 0-9.0 4.5 233 521 =
October 2018 1.0-5.0 24 0.86 353 0.29
November 2018 1.0-9.0 6.4 1.90 29.6 0.45

“The entry effect in 2012 was not significant; therefore, the
heritability was not shown

Disease score rating (DSR)

—

T T T
2010 2012 2018
Years

Fig. 1 The boxplots of disease score rating (DSR) of the RIL
population in 2010, 2012, and 2018. The red arrow indicates
DSR of the susceptible parent Tx964117, and the blue arrow
indicates DSR of the moderate resistant parent Tamrun OLO7

data being collected. In addition, since there was no
significant effect of the entry effect in ANOVA from
the 2012 data, this phenotypic data was not used for
QTL detection.

The Pearson correlation coefficients showed sig-
nificant positive correlation in all 3 years (Fig. 2). We
further examined the correlation between the first
disease rating and the second rating in 2018. With one
month apart, disease rating from the two time points
had a significant correlation of 0.66. The DSR in the
first rating had a mean of 2.4 with a range of 1.0 to 5.0,
while the second rating had a mean DSR of 6.4 with a
range of 1.0 to 9.0 (Table 1). This suggests that the
disease progressed significantly in a short period of
time.
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Fig. 2 Phenotypic performance and Pearson correlation coef-
ficients among disease score rating (DSR) from different years.
Nov2018 indicated the second disease rating in 2018, and

Genetic map and QTL analysis

A total of eight QTLs for Sclerotinia blight resistance
were detected across 3 years (Table 2). Among these
QTLs, three of them were detected by both software
packages, WinQTLCart and R/qtl. And two QTLs
were detected in more than 1 year. In 2010, two QTLs
were detected by both WinQTLCart and R/qtl, i.e. ¢S4
and ¢gS14, with LOD values of 4.4 and 4.7, and R? of
14.5% and 17.3% from WinQTLCart; and LOD values
of 4.4 and 5.3, and R? of 6.6% and 11.6% from R/qtl
(Table 2). ¢S4 was derived from the elite cultivar

Oct2018 indicated the first rating in 2018.7%%*” for
p value < 0.0001 according to Pearson correlation test

Tamrun OLO7; on the other hand, the susceptible
breeding line Tx964117 was the donor of gS14. There
were two QTLs detected in 2012, ¢S8./ and ¢Si4.
Notably, the two QTLs identified in 2012 were also
detected in other years. gS/4 was detected in both
2010 and 2012 and by both QTL detecting software;
while ¢S8.1 was detected in 2012 by R/qtl, and
detected in 2018 by WinQTLCart. Six QTLs were
identified in 2018; four of them were detected by
WinQTLCart only, i.e. ¢gS1, ¢S2, ¢S8.1 and ¢S20.1,
one QTL was only identified by R/qtl (¢S520.2), and
another one was detected by both WinQTLCart and

@ Springer



Genet Resour Crop Evol

Table 2 QTLs identified for disease score rating (DSR) of Sclerotinia blight in the RIL mapping population in 2010, 2012, and 2018

Year QTL Chr. Peak (cM) Closest marker Good Allele*  WinQTLCart. R/qtl
LOD Add® R°(%) LOD Add. R°%)
2010 ¢S4 4 431 Aradu.A04_121130432 A 44% 04 14.5 44 0.27 6.6
qS14 14 82.2 Araip.B04_132742316 B 4.7*% 043 17.3 5.3 036 11.6
2012 ¢S8.1 8 166.4 Aradu.A08_4286171 B 4.0 0.21 6.6
qS14 14 82.2 Araip.B04_132742316 B 32 0.28 12.1 4.1 026 10.8
2018 ¢SI 200.9 Aradu.A01_3241880 A 3.7 0.78 12.0
qS2 39.0 Aradu.A02_89841822 B 3.4 1.33 9.2
qS8.1 8 166.4 Aradu.A08_4286171 B 3.9 0.67 13.0
qS8.2 174.9 Aradu.A08_4286139 B 5.0 0.79 15.9 72% 071 183
¢S20.1 20 323 Araip.B10_119489004 B 38 0.89 25.6
¢S20.2 20 53 Araip.B10_57358933 A 32 0.58 11.0

?Allele A indicates the allele was from Tamrun OLO07, while allele B was from Tx964117. Good allele means the allele reduced DSR.
 “Add.” indicates additive effect of QTLs. “*” for p-value < 0.05 according to 1000 times permutation threshold

R/qtl (¢S8.2). There were QTLs located on chromo-
some 8 as well as chromosome 20 in a very close
distance, however, they were identified as two QTLs
due the non-overlapped QTL interval and the opposite
allelic effect (¢S20.2). ¢gS1 and ¢S20.2 were from the
elite parent Tamrun OL07, with LOD values of 3.7 and
3.2, and R? of 12.0% and 11.0%, respectively. On the
other hand, ¢S2, ¢S8.1, and ¢S20.1 were from the
susceptible parent Tx964117, with LOD values of 3.4,
3.9, and 3.8, and R? of 9.2%, 13%, and 25.6%,
respectively. Interestingly, the DSR decreased allele
of the largest QTL ¢S8.2 also came from Tx964117,
with LOD values of 5.0 and 7.2, and R-square of
159% and 18.3%, from WinQTLCart and R/qtl,
respectively.

Discussion
Phenotype variation

As shown in Table 1, the phenotypic variability in our
experiments was relatively high, especially in 2010
and 2012. This may be due to the experimental
conditions in Stephenville. These experiments were
conducted under field conditions instead of a well-
controlled greenhouse. Therefore, the environmental
effects such as temperature, humidity, and rainfall had
a large effect on plant growth and disease establish-
ment and progress. For example, in 2018, there was an
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extended cool, rainy period that accelerated the
disease progression; on the other hand, 2010 was a
dry year with few precipitations during the growing
season that restrained the overspread of S. minor. We
also noticed that the possibility of new race(s) existed
in the field in 2018. The disease performance showed
that both resistant and susceptible parents showed
a susceptible response in 2018 (Fig. 1). A further
pathogen genomics study is required to validate the
existence of the new race(s). Moreover, box plots of
the three different experiments demonstrated that the
position of the plots in the experimental field also had
a significant effect on disease severity. Among the
three blocks used in the experiment, block #3 always
had the lowest DSR, whereas block #2 always had the
highest DSR (Fig. 3). This phenomenon is consistent
with the results from ANOVA that block effects were
significant in all 3 years. Overall, these factors might
partially explain the high phenotypic variability in this
study and a rather low correlation coefficient value
between the first and second disease ratings in 2018.
Our previous study compared the yield between an
ideal peanut production environment (without disease)
and a Sclerotinia blight screening field (Liang et al.
2018). The results showed that Sclerotinia blight
could cause a 45% yield loss, and the amount of yield
loss highly depends on the disease severity. Although
the yield difference could also be due to other
environmental effects between the two locations, the
major factor that caused the yield loss was the damage
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to the plant. Based on the results from our experiments
in 2012 and 2018, Sclerotinia blight has caused nearly
total yield loss by the death of nearly all the plants. A
huge loss of peanut production due to Sclerotinia
blight has been previously reported (Chenault et al.
2006; Porter and Melouk 1997).

QTLs identified in this study

A total of eight QTLs associated with Sclerotinia
blight resistance were detected in this study (Table 2).
Three QTLs on chromosome A4, B14, and A8 (i.e.,
qS54, qS14, and ¢S8.2) had very high LOD scores,
passed threshold after permutation, and also were
detected by both WinQTLCart and R/qtl. Two of three
large QTLs were derived from the low tolerance
parent Tx964117. Interestingly, two QTLs were
detected in multiple years were also derived from
Tx964117, including ¢S4, which was identified in
2010 and 2012, and ¢S8.1, which was identified in
both 2012 and 2018. One possible reason could be that
there were some other race(s) existed in the field that
Tx964117 has better tolerance instead. The moderate
tolerance parent Tamrun OLO7 was bred and evalu-
ated for the Sclerotinia blight resistance for more than
a decade (Baring et al. 2006); therefore, along with the
selection of pathogen and the existence of new race(s),
the resistance may not as good as before. This factor
could have significant impacts on phenotypic vari-
ability and may reduce the power of QTL detection.
On the other hand, this phenomenon could also due to
the interaction with the genetic background, which is
not uncommon in QTL studies for various traits in
different crops. For example, a large QTL for
increased yield in rice under drought conditions
derived from the susceptible parent has been previ-
ously reported (Bernier et al. 2007). This QTL has
been transferred through marker-assisted selection to
some elite varieties (Dixit et al. 2017; Henry et al.
2014). This may partially explain why many progenies
had better disease resistance than the donor parent.
However, this hypothesis also requires further
investigation.

To our knowledge, only one molecular marker has
been reported associated with Sclerotinia blight resis-
tance in peanut thus far (Chenault et al. 2008). The
sequences of this SSR marker pair are pPGPseq 2E6R
(5-CCTGGGCTGGGGTATTATTT-3’) and pPGPse-
q 2E6L (5’-TACAGCATTGCCTTCTGGTG-3"). This

marker has been used in several studies, such as the
evaluation of the U.S. peanut mini core collection
(Chenault et al. 2009). New sources for Sclerotinia
resistance have also been identified (Bennett et al. 2018;
Yoletal. 2014). ABLAST search has been performed to
identify the position of this SSR marker using the full
length of pPGPseq 2E6 sequence (Ferguson etal. 2004).
The sequence has a hit on chromosome AQ7 of cultivar
peanut Shitouqi with 98% identities and 83% coverage.
Therefore, all eight QTLs identified in this study are
novel QTLs.

Interestingly, a previous reported peanut leaf spot
disease resistance QTL gLS74.1 had the same marker
peak as ¢gS14, which was detected in this study (Liang
et al. 2017). The beneficial allele of both ¢S4 and
qLS14.1 are from Tx964117. Leaf spot is a foliar
fungal disease caused by Cercospora arachidicola
(early leafspot) or Cercosporidium persoatum (late
leafspot); therefore, ¢S14/qLSI14.1 could be a good
target QTL for future marker-assisted breeding pro-
grams. Previously, a peanut transgenic study indicated
that transgenic peanut lines with antifungal genes,
such as rice chitinase and alfalfa glucanase, had partial
resistance to Sclerotinia blight (Chenault et al. 2005).
Other than fungal resistant genes, a previous study
also showed that transferring barley oxalate oxidase
may also improve the resistance of peanut to Sclero-
tinia blight (Chenault et al. 2005; Hu et al. 2015).

Sclerotinia blight had appeared in the United States
since 1971 and was first identified in Texas in 1981
(Crutcher et al. 2018; Goldman et al. 1995). However,
no disease resistance QTLs have been identified in the
past decade. Most of the current disease resistant
studies have focused on large-effect QTLs and mainly
were qualitative loci; on the contrary, quantitative
resistance is less known (Corwin and Kliebenstein
2017). Many large-effect R genes correspond to their
specific pathogen and activate a rapid defense
response such as programmed cell death, an effective
defense mechanism against biotrophic pathogens.
However, the gene-for-gene response would not be
observed in the interaction with necrotrophic patho-
gens such as S. minor (Glazebrook 2005), since
necrotrophic pathogens indeed benefit from host cell
death. The defense mechanisms against necrotrophs
are usually controlled by hundreds of causal genes,
such as the strengthening of the cell wall, biosynthesis
of defense compounds, and the interaction between
different mechanisms such as the JA signaling
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pathway and camalexin production (Corwin and
Kliebenstein 2017; Glazebrook 2005). These might
explain why there were no QTL studies of Sclerotinia
blight being previously reported. Our study provides
the first QTL identification for Sclerotinia blight
resistance using high-resolution SNPs markers. Some
of these QTLs can be used as potential targets for
varietal improvement.
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